Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic brain imaging in the palm of your hand

25.08.2005


New portable device captures pictures beneath the living brain’s surface



Researchers at Stanford University have demonstrated a promising, minimally invasive optical technique that can capture micron-scale images from deep in the brains of live subjects. The method, called two-photon microendoscopy, combines a pair of powerful optical and mechanical techniques into one device that fits in the palm of the hand. The results appear in the September 1, 2005 issue of Optics Letters, a journal published by the Optical Society of America.

Researchers want to image individual cells inside living subjects because it will give them insight into how cellular behavior gives rise to the properties of organisms as a whole. For instance, the nerve cells of the hippocampus region of the brain give rise to important mental processes such as learning and memory.


Imaging living cells below the surface has been difficult to accomplish using conventional techniques. Electron microscopy can’t be used on living tissue, and optical (light) microscopy can’t penetrate very deeply into tissue because light scatters as it travels through tissue near the surface. Thus traditionally microscopic images of the living brain have only been made near the surface. Yet researchers would like to know more about certain deep-tissue areas of the brain, which are critical to understanding Alzheimer’s and Parkinson’s disease, for example.

Scientists often use some form of fluorescence microscopy to image tissue. In conventional "one-photon" fluorescence imaging, the scientist injects a dye into tissue and then shines a bright light. The tissue fluoresces, or radiates, light of a different color in response. However, a problem with one-photon fluorescence is that the deep tissue causes the photons to ricochet, or scatter, as they return to the detector. The result is a background haze in the images, almost like viewing the sample through a cloud.

It’s possible to get rid of background haze and reduce the scattering using two-photon fluorescence imaging. Instead of one higher-energy photon, researchers bombard the molecule with two photons of lower energy. Their combined energies total the energy required to excite the fluorescent-dye molecules used to mark the tissue. The technique gets rid of the background haze and reduces scattering, because molecules outside the area of interest are much less likely to absorb a pair of photons simultaneously and fluoresce in response.

While two-photon microscopy offers an alternative to traditional one-photon fluorescence microscopy, it still only penetrates brain tissue down to about 500-600 microns – barely scratching the surface. To get at the deep structures, the Stanford researchers turned to microendoscopy, tiny, minimally invasive optical probes that could be inserted deep into living brain tissue. To make one group of images (figures 1c-1e), the researchers inserted the microendoscope into the hippocampus, about a millimeter below the mouse brain surface, to image this part of the brain. The two-photon imaging provided an additional 80 microns of depth, below the hippocampal surface.

When combined with two-photon fluorescence, the result is a system that brings the power of a cutting-edge imaging technique to the deep tissues of the brain. By creating a handheld device based on some of the latest advances in micromotors, lensing and fiber optics (see accompanying article for more information), the researchers were able to establish a new technique that enables them to obtain microscopic images deeper in the living brain than was possible before microendoscopy.

"We’re bringing two-photon imaging to endoscopy and we’re putting it all into a miniaturized package," says Mark Schnitzer, the team leader on the Optics Letters paper.

The Stanford researchers have used their two-photon microendoscopy technique to glean the detailed images of the blood vessels in the hippocampus sections of the brains of live mice. The mice were injected with a fluorescein dye – an FDA-approved contrast agent that is most commonly used for retinal exams in humans. The fluorescein labeled the blood plasma so the vessels in the brain could be clearly seen.

There are many different options for further exploration, now that the technique has been successfully demonstrated, ranging from biomedical research to clinical imaging applications. The Stanford researchers will be looking into several of those options.

"This is a portable handheld device with the power of two-photon imaging -- the full functionality of a microscope that fits in the palm of your hand," says Schnitzer, indicating that this is what makes the technology eminently marketable.

Ben Stein | EurekAlert!
Further information:
http://www.aip.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>