Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now you see it, now you don’t: ’Change blindness’ isn’t magic

24.08.2005


A team of scientists at UCL (University College London) has discovered why we often miss major changes in our surroundings - such as a traffic light turning green when we’re listening to the radio. Our inability to notice large changes in a visual scene is a phenomenon often exploited by magicians - but only now can scientists put their finger on the exact part of the brain that is so often deceived.



The UCL team shows, in a research paper published in the September issue of the journal Cerebral Cortex (which goes online on 24th August) that the part of the brain called the parietal cortex, the area responsible for concentration, is also critical to our ability to detect changes. The exact critical spot lies just a few centimetres above and behind the right ear – the area many people scratch when concentrating.

Using Transcranial Magnetic Stimulation (TMS), the team switched off the parietal cortex part of the brain temporarily by applying magnetic stimulation to the head via a magnetic coil which produces small electrical currents to the brain. Without help from this region of the brain, subjects failed to notice even major visual changes– in this case a change of a person’s face.


In previous experiments using brain scanning (functional magnetic resonance imaging or fMRI), the team led by Professor Nilli Lavie at the UCL Department of Psychology, discovered that detection of visual changes was not only correlated with activity in conventional visual areas of the brain but also with activity in the parietal cortex.

But, until this experiment, when the team actually switched off the parietal cortex using TMS, they didn’t know that noticing change critically depends on activity in the parietal cortex. When that region of the brain was effectively switched off, ’change blindness’ (a failure to notice large changes in a visual scene) occurred.

Professor Lavie said: "Because the parietal lobe is not part of the visual cortex it was at first surprising to find that activity in the parietal lobe is critical for visual awareness. We have always known that the parietal cortex was responsible for concentrating. But it was a surprise to find out it is also important for detecting visual changes in a scene. The finding that this region of the brain has both these functions, concentration and visual awareness, explains why we can be so easily deceived by, say, a magicians’ trick. When we’re concentrating so hard on something that our processing capacity is at its limits, the parietal cortex is not available to pay attention to new things and even dramatic changes can go unnoticed. If you’re concentrating on what the magician’s left hand is doing, you won’t notice what the right hand is doing."

Alex Brew | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>