Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now you see it, now you don’t: ’Change blindness’ isn’t magic

24.08.2005


A team of scientists at UCL (University College London) has discovered why we often miss major changes in our surroundings - such as a traffic light turning green when we’re listening to the radio. Our inability to notice large changes in a visual scene is a phenomenon often exploited by magicians - but only now can scientists put their finger on the exact part of the brain that is so often deceived.



The UCL team shows, in a research paper published in the September issue of the journal Cerebral Cortex (which goes online on 24th August) that the part of the brain called the parietal cortex, the area responsible for concentration, is also critical to our ability to detect changes. The exact critical spot lies just a few centimetres above and behind the right ear – the area many people scratch when concentrating.

Using Transcranial Magnetic Stimulation (TMS), the team switched off the parietal cortex part of the brain temporarily by applying magnetic stimulation to the head via a magnetic coil which produces small electrical currents to the brain. Without help from this region of the brain, subjects failed to notice even major visual changes– in this case a change of a person’s face.


In previous experiments using brain scanning (functional magnetic resonance imaging or fMRI), the team led by Professor Nilli Lavie at the UCL Department of Psychology, discovered that detection of visual changes was not only correlated with activity in conventional visual areas of the brain but also with activity in the parietal cortex.

But, until this experiment, when the team actually switched off the parietal cortex using TMS, they didn’t know that noticing change critically depends on activity in the parietal cortex. When that region of the brain was effectively switched off, ’change blindness’ (a failure to notice large changes in a visual scene) occurred.

Professor Lavie said: "Because the parietal lobe is not part of the visual cortex it was at first surprising to find that activity in the parietal lobe is critical for visual awareness. We have always known that the parietal cortex was responsible for concentrating. But it was a surprise to find out it is also important for detecting visual changes in a scene. The finding that this region of the brain has both these functions, concentration and visual awareness, explains why we can be so easily deceived by, say, a magicians’ trick. When we’re concentrating so hard on something that our processing capacity is at its limits, the parietal cortex is not available to pay attention to new things and even dramatic changes can go unnoticed. If you’re concentrating on what the magician’s left hand is doing, you won’t notice what the right hand is doing."

Alex Brew | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>