Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system finding paves way for vaccine use in some leukemia, lymphoma cancers

22.08.2005


Researchers at The University of Texas M. D. Anderson Cancer Center and the National Cancer Institute have found that an experimental vaccine can prime the immune system to help fight an aggressive form of lymphoma, even though prior therapy had eliminated virtually all of the B cells thought necessary to mount such a defense.



Their study, published in the September issue of Nature Medicine, has both important basic science and clinical implications, researchers say. It demonstrates that few, if any, B cells are needed to trigger an effective T-cell immune response - a finding which overturns the commonly accepted notion that both are needed to prime the human immune system. The article will be available online on Aug. 21, 2005, at noon CDT.

Their research also tests the use of personalized vaccines to help lymphoma patients fend off a recurrence of their cancer after treatment. Several such cancer vaccines are in human testing. In this study, conducted at the Center for Cancer Research, National Cancer Institute, treatment with a B-cell depleting treatment regimen followed by an experimental vaccine resulted in an impressive 89 percent survival rate at 46 months for 26 patients with mantle cell lymphoma, which is difficult to control.


"This is the first human cancer vaccine study to see T-cell responses in the absence of B cells, and this paves the way to use vaccines in a number of hematological cancers that are treated by eliminating diseased B cells," says the study’s first author, Sattva Neelapu, M.D., an assistant professor in the Department of Lymphoma at M. D. Anderson.

Those cancers include forms of lymphoma and leukemia in which the cancer evolves in B-cell lymphocytes, white blood cells whose job is to produce antibodies that activate a response by the immune system. New treatments, such as rituximab, are designed to completely wipe out diseased (as well as healthy) B cells and can prolong patient survival. However, because researchers were concerned that B-cell depletion from rituximab may impede immune responses to cancer vaccines, and animal studies were contradictory, rituximab has been omitted from lymphoma vaccine studies, according to Wyndham Wilson, M.D., Ph.D., the study’s principal investigator and Chief, Lymphoid Malignancies Therapeutic Section, NCI.

This question has now been answered, says senior author Larry Kwak, M.D., Ph.D., professor and chair of the Department of Lymphoma at M. D. Anderson. "We were frankly surprised to find that B cells were coming back in patients that were already primed to fight their tumors," he says. "Now we know B cells are not needed for T-cell immunity."

The study was designed to address the immunological effects of B-cell depletion and to assess the use of idiotype vaccine in mantle cell lymphoma, a rare type of non-Hodgkin’s lymphoma for which there is no effective long-term therapy - the majority of patients relapse and succumb to their disease. Kwak helped develop the vaccine while he worked at the National Cancer Institute (NCI) before moving to M. D. Anderson. The so-called "idiotype" vaccine is tailored to each patient, based on the specific antigens present on the outside of the diseased B cells. The vaccine is designed to alert a patient’s immune system to those antigens, and train it to destroy these cells whenever they appear.

The vaccine was originally tested for use in follicular lymphoma, and was subsequently licensed by the NCI to Accentia Biopharmaceuticals. That company, for which Kwak now consults, is testing it in a Phase III clinical trial. Besides that vaccine, known by the name Biovaxid, two other customized lymphoma vaccines are now being tested in the United States, and each differs only in the way that they are produced.

In this Phase I study, researchers prepared an individualized vaccine for each patient based on the specific antigens present on their cancerous B cells. The vaccine was given to the patients three months after chemotherapy/rituximab treatment, and five doses in all were given at monthly intervals.

"After the third vaccination, we began to see T-cell responses. An antibody response to the tumor produced by recovering B cells was seen after the fourth or fifth vaccination," says Neelapu.

That antibody response was unexpected, researchers say. "We don’t know how it happened," Neelapu says. "It may be that some precursor B cells were being primed or that there were very small numbers of B cells remaining in lymph nodes or other compartments that were not depleted. Or other immune cells, such as dendritic cells, may have taken up antigen presenting cell function."

Although several patients have relapsed for reasons that are unclear, "so many of these patients continue to be alive that it is quite possible the vaccine did modify the natural history of the disease," Kwak says. "We can’t over interpret this single study, but these patients may have done better than expected."

Typical overall survival for mantle cell lymphoma is 50 percent at three years, Wilson says.

M. D. Anderson researchers are already working on improving the vaccine before testing it further.

Jay Edwards | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>