Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immune system finding paves way for vaccine use in some leukemia, lymphoma cancers


Researchers at The University of Texas M. D. Anderson Cancer Center and the National Cancer Institute have found that an experimental vaccine can prime the immune system to help fight an aggressive form of lymphoma, even though prior therapy had eliminated virtually all of the B cells thought necessary to mount such a defense.

Their study, published in the September issue of Nature Medicine, has both important basic science and clinical implications, researchers say. It demonstrates that few, if any, B cells are needed to trigger an effective T-cell immune response - a finding which overturns the commonly accepted notion that both are needed to prime the human immune system. The article will be available online on Aug. 21, 2005, at noon CDT.

Their research also tests the use of personalized vaccines to help lymphoma patients fend off a recurrence of their cancer after treatment. Several such cancer vaccines are in human testing. In this study, conducted at the Center for Cancer Research, National Cancer Institute, treatment with a B-cell depleting treatment regimen followed by an experimental vaccine resulted in an impressive 89 percent survival rate at 46 months for 26 patients with mantle cell lymphoma, which is difficult to control.

"This is the first human cancer vaccine study to see T-cell responses in the absence of B cells, and this paves the way to use vaccines in a number of hematological cancers that are treated by eliminating diseased B cells," says the study’s first author, Sattva Neelapu, M.D., an assistant professor in the Department of Lymphoma at M. D. Anderson.

Those cancers include forms of lymphoma and leukemia in which the cancer evolves in B-cell lymphocytes, white blood cells whose job is to produce antibodies that activate a response by the immune system. New treatments, such as rituximab, are designed to completely wipe out diseased (as well as healthy) B cells and can prolong patient survival. However, because researchers were concerned that B-cell depletion from rituximab may impede immune responses to cancer vaccines, and animal studies were contradictory, rituximab has been omitted from lymphoma vaccine studies, according to Wyndham Wilson, M.D., Ph.D., the study’s principal investigator and Chief, Lymphoid Malignancies Therapeutic Section, NCI.

This question has now been answered, says senior author Larry Kwak, M.D., Ph.D., professor and chair of the Department of Lymphoma at M. D. Anderson. "We were frankly surprised to find that B cells were coming back in patients that were already primed to fight their tumors," he says. "Now we know B cells are not needed for T-cell immunity."

The study was designed to address the immunological effects of B-cell depletion and to assess the use of idiotype vaccine in mantle cell lymphoma, a rare type of non-Hodgkin’s lymphoma for which there is no effective long-term therapy - the majority of patients relapse and succumb to their disease. Kwak helped develop the vaccine while he worked at the National Cancer Institute (NCI) before moving to M. D. Anderson. The so-called "idiotype" vaccine is tailored to each patient, based on the specific antigens present on the outside of the diseased B cells. The vaccine is designed to alert a patient’s immune system to those antigens, and train it to destroy these cells whenever they appear.

The vaccine was originally tested for use in follicular lymphoma, and was subsequently licensed by the NCI to Accentia Biopharmaceuticals. That company, for which Kwak now consults, is testing it in a Phase III clinical trial. Besides that vaccine, known by the name Biovaxid, two other customized lymphoma vaccines are now being tested in the United States, and each differs only in the way that they are produced.

In this Phase I study, researchers prepared an individualized vaccine for each patient based on the specific antigens present on their cancerous B cells. The vaccine was given to the patients three months after chemotherapy/rituximab treatment, and five doses in all were given at monthly intervals.

"After the third vaccination, we began to see T-cell responses. An antibody response to the tumor produced by recovering B cells was seen after the fourth or fifth vaccination," says Neelapu.

That antibody response was unexpected, researchers say. "We don’t know how it happened," Neelapu says. "It may be that some precursor B cells were being primed or that there were very small numbers of B cells remaining in lymph nodes or other compartments that were not depleted. Or other immune cells, such as dendritic cells, may have taken up antigen presenting cell function."

Although several patients have relapsed for reasons that are unclear, "so many of these patients continue to be alive that it is quite possible the vaccine did modify the natural history of the disease," Kwak says. "We can’t over interpret this single study, but these patients may have done better than expected."

Typical overall survival for mantle cell lymphoma is 50 percent at three years, Wilson says.

M. D. Anderson researchers are already working on improving the vaccine before testing it further.

Jay Edwards | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>