Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical tool helps detect cancer

17.08.2005


Ames Laboratory research also allows nanoscale crystal growth

Scientists have long used ultra-fine glass tubes known as capillaries to analyze the chemical makeup of substances. Called capillary electrophoresis, or CE, the method applies high voltage to the capillaries, and by measuring the rate that the various materials move through the capillaries, researchers are able to identify individual compounds.

A group of researchers at the U.S. Department of Energy’s Ames Laboratory have developed a method called dynamic multiple equilibrium gradients, DMEG for short, that dramatically fine-tunes the process, allowing for a significant increase in resolution over previous methods. Potential applications include chemical, biological and biomedical sciences, as well as in environmental monitoring, biological warfare detection, drug discovery, and more.



“This method is hyperselective and we can design it to target specific analytes for separation,” said Ryszard Jankowiak, an Ames Lab senior scientist. “Running multiple electric field gradients can focus and move the analytes to the detection window at precisely defined times, creating signature ‘fingerprints’, which minimizes the probability of false positives.”

The advance makes it possible to detect the smallest traces of substances, such as the estrogen-derived conjugates and DNA adducts in human fluid samples that could serve as biomarkers in risk assessment of breast and prostate cancers. In fact, this and other technologies being developed at the Ames Laboratory – biosensors and fluorescence-based imaging – have been used in work with cancer researchers at the University of Nebraska Medical Center and Johns Hopkins University to identify a specific adduct in the urine of prostate and breast cancer patients, and could lead to even earlier detection or indication of cancer risk.

Unlike traditional capillary electrophoresis, Jankowiak’s team, which includes Yuri Markushin and graduate student Abdulilah Dawoud, uses only low voltage, around 2kV or less. Another difference is in the way the voltage is applied. Tiny electrodes are microfabricated along the walls of the hair-like capillaries (or channels), in essence creating a complex grid of electrodes.

“Saw-tooth type waves are applied along the channel outfitted with electrodes,” Jankowiak explains. “The electrodes act as capacitors and the applied waveforms generate electric fields. The moving variable electric field gradients induce very efficient focusing and separation of analytes. The analytes move along the capillary and tend to concentrate at the various electric field gradients. By varying the amplitude of the electric field gradients, these concentration points can be fine-tuned, making it easy to separate and identify the specific analytes.”

While the ability to design and test for specific analytes with greater accuracy marks a large leap forward in separation technology, DMEG has another, possibly even greater capability. Because the system can be fine-tuned to separate specific substances and concentrate them at particular points as they move through the capillaries, it can be used to create crystals.

“To achieve crystallization, we created multiple moving electric field gradients along the crystallization channel that can trap, concentrate, and move charged molecules (e.g. proteins) of interest,” Jankowiak said. “In other words, using the DMEG approach, we can create and electronically control many localized regions of supersaturation which can be used to produce crystals.”

One potential application for this new crystal growth method is photosynthetic complexes for use in solar/photovoltaic cells. The major stumbling block in using these materials is that they must be arranged in architectures that promote electron transport and prevent energy wasting recombination. The complexes must also be interfaced with a conducting material in order to harvest the energy. The controlled growth offered by DMEG can help overcome these hurdles.

Another possible application is for desalinization of seawater, using DMEG to extract the salt. Just recently, Jankowiak has been awarded a grant by the Office of Naval Research and NASA to pursue research in this area.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

Getting closer to porous, light-responsive materials

26.07.2017 | Materials Sciences

Large, distant comets more common than previously thought

26.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>