Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New analytical tool helps detect cancer

17.08.2005


Ames Laboratory research also allows nanoscale crystal growth

Scientists have long used ultra-fine glass tubes known as capillaries to analyze the chemical makeup of substances. Called capillary electrophoresis, or CE, the method applies high voltage to the capillaries, and by measuring the rate that the various materials move through the capillaries, researchers are able to identify individual compounds.

A group of researchers at the U.S. Department of Energy’s Ames Laboratory have developed a method called dynamic multiple equilibrium gradients, DMEG for short, that dramatically fine-tunes the process, allowing for a significant increase in resolution over previous methods. Potential applications include chemical, biological and biomedical sciences, as well as in environmental monitoring, biological warfare detection, drug discovery, and more.



“This method is hyperselective and we can design it to target specific analytes for separation,” said Ryszard Jankowiak, an Ames Lab senior scientist. “Running multiple electric field gradients can focus and move the analytes to the detection window at precisely defined times, creating signature ‘fingerprints’, which minimizes the probability of false positives.”

The advance makes it possible to detect the smallest traces of substances, such as the estrogen-derived conjugates and DNA adducts in human fluid samples that could serve as biomarkers in risk assessment of breast and prostate cancers. In fact, this and other technologies being developed at the Ames Laboratory – biosensors and fluorescence-based imaging – have been used in work with cancer researchers at the University of Nebraska Medical Center and Johns Hopkins University to identify a specific adduct in the urine of prostate and breast cancer patients, and could lead to even earlier detection or indication of cancer risk.

Unlike traditional capillary electrophoresis, Jankowiak’s team, which includes Yuri Markushin and graduate student Abdulilah Dawoud, uses only low voltage, around 2kV or less. Another difference is in the way the voltage is applied. Tiny electrodes are microfabricated along the walls of the hair-like capillaries (or channels), in essence creating a complex grid of electrodes.

“Saw-tooth type waves are applied along the channel outfitted with electrodes,” Jankowiak explains. “The electrodes act as capacitors and the applied waveforms generate electric fields. The moving variable electric field gradients induce very efficient focusing and separation of analytes. The analytes move along the capillary and tend to concentrate at the various electric field gradients. By varying the amplitude of the electric field gradients, these concentration points can be fine-tuned, making it easy to separate and identify the specific analytes.”

While the ability to design and test for specific analytes with greater accuracy marks a large leap forward in separation technology, DMEG has another, possibly even greater capability. Because the system can be fine-tuned to separate specific substances and concentrate them at particular points as they move through the capillaries, it can be used to create crystals.

“To achieve crystallization, we created multiple moving electric field gradients along the crystallization channel that can trap, concentrate, and move charged molecules (e.g. proteins) of interest,” Jankowiak said. “In other words, using the DMEG approach, we can create and electronically control many localized regions of supersaturation which can be used to produce crystals.”

One potential application for this new crystal growth method is photosynthetic complexes for use in solar/photovoltaic cells. The major stumbling block in using these materials is that they must be arranged in architectures that promote electron transport and prevent energy wasting recombination. The complexes must also be interfaced with a conducting material in order to harvest the energy. The controlled growth offered by DMEG can help overcome these hurdles.

Another possible application is for desalinization of seawater, using DMEG to extract the salt. Just recently, Jankowiak has been awarded a grant by the Office of Naval Research and NASA to pursue research in this area.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>