Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Gadonanotubes’ greatly outperform existing MRI contrast agents

12.08.2005


Placing gadolinium in DNA-sized carbon tubes boosts performance, reduces toxicity



Researchers at Rice University, the Baylor College of Medicine, the University of Houston and the Ecole Polytechnique Fédérale de Lausanne in Switzerland have created a new class of magnetic resonance imaging (MRI) contrast agents that are at least 40 times more effective than the best in clinical use.

The new agents -- dubbed gadonanotubes -- use the same highly toxic metal, gadolinium, that is given to more than a quarter of MRI patients today, but the metal atoms are encased inside a hollow tube of pure carbon called a nanotube. Shrouding the toxic metals inside the benign carbon is expected to significantly reduce or eliminate the metal’s toxicity.


The research was published this month in the journal Chemical Communications.

"In prior work, we have boosted the effectiveness of gadolinium MRI contrast agents by encasing them in spheres of carbon called buckyballs," said lead author Lon Wilson, professor of chemistry at Rice. "Each nanotube will hold more gadolinium atoms than a buckyball, so we expected them to be more effective agents. But they are actually much, much better than we anticipated, so much so that no existing theory can explain how they work."

Wilson and colleagues use short segments of nanotubes, tiny cylinders of pure carbon about one billionth of a meter, or one nanometer, in diameter. That’s about as wide as a strand of DNA. The ultrashort segments are only about 20-100 times longer than they are wide, and once inside the nanotubes, the gadolinium atoms naturally aggregate into tiny clusters of about 10 atoms each. Wilson and colleagues suspect the clustering is causing the unexplained increases in magnetic and MRI effects that they observed in tests at Rice, at the University of Houston’s Texas Center for Superconductivity, and in the Swiss laboratories.

More than 25 million patients in the U.S. undergo MRIs each year. Doctors use contrast agents in about 30 percent of MRIs. The contrast agents increase the sensitivity of the scans, making it easier for doctors to deliver a diagnosis. Gadolinium agents are the most effective agents and the most commonly used.

In the future, the researchers hope to use existing methods of attaching disease-specific antibodies and peptides to gadonanotubes so they can be targeted to cancerous tumors and other diseased cells.

Co-authors include Rice’s Balaji Sitharaman, Kyle Kissell, Keith Hartman and Lesa Tran; the University of Houston’s Andrei Baikalov, Irene Rusakova and Yanyi Sun; the Baylor College of Medicine’s Htet Khant, Steven Ludtke and Wah Chiu; and the Ecole Polytechnique Fédérale’s Sabrina Laus, Eva Tóth, Lothar Helm and André Merbach.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>