Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose - Not A Single Minute Without Surveillance

09.08.2005


An amazing device has been invented by the St. Petersburg physicists – specialists of the Vavilov State Optical Institute. With its help, a patient can learn the glucose concentration in the blood without injections, and if the concentration is rather high, to inject additional amount of insulin into the blood.



The device is an artificial pancreas and it will consist of two parts. One part, according to the developers’ idea, is slightly larger than a watch battery and can be implanted under the skin near the waist. The other part, the size of a cigarette pack, will be attached outside the body.

Unfortunately, hundreds of thousands people know about insulin-dependent diabetes from their own experience. Because of the pancreas’ malfunction have to test their blood several times a day to learn the glucose concentration and to find out if another insulin injection is needed. This would be relatively simple if the organism worked strictly according to the schedule and a person could say precisely when it is necessary to inject insulin and in what amount. However, in reality, everything is more complicated: the glucose level changes under its own laws, and a simple schedule of injections does not always help.


If a person is healthy, the problem is simply solved by his/her own pancreas. If required, it would add to the insulin “discharge”, if this is not required – it would reduce it. If a person is sick, his/her pancreas fails to handle the task. So the researchers are trying to produce an artificial pancreas, they have been trying for about twenty-five years with varying success. Research by St. Petersburg physicists promises a significant breakthrough.

“The essence of our method is that it allows to identify glucose and to determine its concentration against a background of multiple other components of blood – by the glucose two-dimensional spectral image, says Vladimir Chuvashov, Ph. D. (Engineering), manager of research. That is, the method allows to measure the glucose content in parallel in one beam by two ways – both by the spectroscopic and the polarimetric ones.

“Practically all earlier developments are based on one-dimensional spectral images. The difference in quality of glucose recognition is approximately the same as between one-dimensional and two-dimensional dactyloscopic skin print in the course of person identification. The method we are developing can be used for glucose identification both in the ophthalmic fluid (this is a non-invasive option) and in the corporeal one (implantable option)”.

In the second case, measurement takes place in the part of the device that is under the skin. It is connected with the help of the optical communications fiber line with the external part where a semiconductor laser is located along with micro-devices for analysis of the signal obtained in the course of the analysis.

So, a small laser generates irradiation. The laser beam is directed under the skin along the optical fiber, i.e. part of glass fiber. The beam is partly absorbed, partly dispersed, and partly reflected. The important thing is that glucose (due to structure of its molecules) changes the beam parameters to some extent. Firstly, it changes the plane of optical polarization, and it is known to what extent. Secondly, it changes intensity of scattered radiation proportionally to the properties inherent in glucose (physicists specify – “due to fundamental absorption bands caused by vibration frequency of a glucose molecule”).

The light which has changed as a result of interaction with the tissue and substances dissolved in intercellular fluid, returns back to the device again along the waveguide. The beam should be analyzed there, so that in the long run a person could determine the glucose concentration in this fluid. To this end, respective devices – spectrometers – are required. Large spectrometers are no problem for a long time, they have been well-known for long. It is difficult to design small ones – so that it would be convenient to carry them all the time.

There are multiple private companies worldwide that deal with similar developments on a competitive basis, and many technical solutions are already known. Detailed development is certainly necessary anyway, but this problem is solvable, and researchers already know the way to solve it. Especially because they deal with the problem jointly with colleagues from the internationally known Ioffe Physical & Technical Institute. On the other hand, several years ago, they already managed to produce a pre-production model of a similar device – a pocket polarimeter for identification of glucose in urine. Therefore, the researchers possess the necessary experience and knowledge.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>