Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glucose - Not A Single Minute Without Surveillance


An amazing device has been invented by the St. Petersburg physicists – specialists of the Vavilov State Optical Institute. With its help, a patient can learn the glucose concentration in the blood without injections, and if the concentration is rather high, to inject additional amount of insulin into the blood.

The device is an artificial pancreas and it will consist of two parts. One part, according to the developers’ idea, is slightly larger than a watch battery and can be implanted under the skin near the waist. The other part, the size of a cigarette pack, will be attached outside the body.

Unfortunately, hundreds of thousands people know about insulin-dependent diabetes from their own experience. Because of the pancreas’ malfunction have to test their blood several times a day to learn the glucose concentration and to find out if another insulin injection is needed. This would be relatively simple if the organism worked strictly according to the schedule and a person could say precisely when it is necessary to inject insulin and in what amount. However, in reality, everything is more complicated: the glucose level changes under its own laws, and a simple schedule of injections does not always help.

If a person is healthy, the problem is simply solved by his/her own pancreas. If required, it would add to the insulin “discharge”, if this is not required – it would reduce it. If a person is sick, his/her pancreas fails to handle the task. So the researchers are trying to produce an artificial pancreas, they have been trying for about twenty-five years with varying success. Research by St. Petersburg physicists promises a significant breakthrough.

“The essence of our method is that it allows to identify glucose and to determine its concentration against a background of multiple other components of blood – by the glucose two-dimensional spectral image, says Vladimir Chuvashov, Ph. D. (Engineering), manager of research. That is, the method allows to measure the glucose content in parallel in one beam by two ways – both by the spectroscopic and the polarimetric ones.

“Practically all earlier developments are based on one-dimensional spectral images. The difference in quality of glucose recognition is approximately the same as between one-dimensional and two-dimensional dactyloscopic skin print in the course of person identification. The method we are developing can be used for glucose identification both in the ophthalmic fluid (this is a non-invasive option) and in the corporeal one (implantable option)”.

In the second case, measurement takes place in the part of the device that is under the skin. It is connected with the help of the optical communications fiber line with the external part where a semiconductor laser is located along with micro-devices for analysis of the signal obtained in the course of the analysis.

So, a small laser generates irradiation. The laser beam is directed under the skin along the optical fiber, i.e. part of glass fiber. The beam is partly absorbed, partly dispersed, and partly reflected. The important thing is that glucose (due to structure of its molecules) changes the beam parameters to some extent. Firstly, it changes the plane of optical polarization, and it is known to what extent. Secondly, it changes intensity of scattered radiation proportionally to the properties inherent in glucose (physicists specify – “due to fundamental absorption bands caused by vibration frequency of a glucose molecule”).

The light which has changed as a result of interaction with the tissue and substances dissolved in intercellular fluid, returns back to the device again along the waveguide. The beam should be analyzed there, so that in the long run a person could determine the glucose concentration in this fluid. To this end, respective devices – spectrometers – are required. Large spectrometers are no problem for a long time, they have been well-known for long. It is difficult to design small ones – so that it would be convenient to carry them all the time.

There are multiple private companies worldwide that deal with similar developments on a competitive basis, and many technical solutions are already known. Detailed development is certainly necessary anyway, but this problem is solvable, and researchers already know the way to solve it. Especially because they deal with the problem jointly with colleagues from the internationally known Ioffe Physical & Technical Institute. On the other hand, several years ago, they already managed to produce a pre-production model of a similar device – a pocket polarimeter for identification of glucose in urine. Therefore, the researchers possess the necessary experience and knowledge.

Sergey Komarov | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>