Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucose - Not A Single Minute Without Surveillance

09.08.2005


An amazing device has been invented by the St. Petersburg physicists – specialists of the Vavilov State Optical Institute. With its help, a patient can learn the glucose concentration in the blood without injections, and if the concentration is rather high, to inject additional amount of insulin into the blood.



The device is an artificial pancreas and it will consist of two parts. One part, according to the developers’ idea, is slightly larger than a watch battery and can be implanted under the skin near the waist. The other part, the size of a cigarette pack, will be attached outside the body.

Unfortunately, hundreds of thousands people know about insulin-dependent diabetes from their own experience. Because of the pancreas’ malfunction have to test their blood several times a day to learn the glucose concentration and to find out if another insulin injection is needed. This would be relatively simple if the organism worked strictly according to the schedule and a person could say precisely when it is necessary to inject insulin and in what amount. However, in reality, everything is more complicated: the glucose level changes under its own laws, and a simple schedule of injections does not always help.


If a person is healthy, the problem is simply solved by his/her own pancreas. If required, it would add to the insulin “discharge”, if this is not required – it would reduce it. If a person is sick, his/her pancreas fails to handle the task. So the researchers are trying to produce an artificial pancreas, they have been trying for about twenty-five years with varying success. Research by St. Petersburg physicists promises a significant breakthrough.

“The essence of our method is that it allows to identify glucose and to determine its concentration against a background of multiple other components of blood – by the glucose two-dimensional spectral image, says Vladimir Chuvashov, Ph. D. (Engineering), manager of research. That is, the method allows to measure the glucose content in parallel in one beam by two ways – both by the spectroscopic and the polarimetric ones.

“Practically all earlier developments are based on one-dimensional spectral images. The difference in quality of glucose recognition is approximately the same as between one-dimensional and two-dimensional dactyloscopic skin print in the course of person identification. The method we are developing can be used for glucose identification both in the ophthalmic fluid (this is a non-invasive option) and in the corporeal one (implantable option)”.

In the second case, measurement takes place in the part of the device that is under the skin. It is connected with the help of the optical communications fiber line with the external part where a semiconductor laser is located along with micro-devices for analysis of the signal obtained in the course of the analysis.

So, a small laser generates irradiation. The laser beam is directed under the skin along the optical fiber, i.e. part of glass fiber. The beam is partly absorbed, partly dispersed, and partly reflected. The important thing is that glucose (due to structure of its molecules) changes the beam parameters to some extent. Firstly, it changes the plane of optical polarization, and it is known to what extent. Secondly, it changes intensity of scattered radiation proportionally to the properties inherent in glucose (physicists specify – “due to fundamental absorption bands caused by vibration frequency of a glucose molecule”).

The light which has changed as a result of interaction with the tissue and substances dissolved in intercellular fluid, returns back to the device again along the waveguide. The beam should be analyzed there, so that in the long run a person could determine the glucose concentration in this fluid. To this end, respective devices – spectrometers – are required. Large spectrometers are no problem for a long time, they have been well-known for long. It is difficult to design small ones – so that it would be convenient to carry them all the time.

There are multiple private companies worldwide that deal with similar developments on a competitive basis, and many technical solutions are already known. Detailed development is certainly necessary anyway, but this problem is solvable, and researchers already know the way to solve it. Especially because they deal with the problem jointly with colleagues from the internationally known Ioffe Physical & Technical Institute. On the other hand, several years ago, they already managed to produce a pre-production model of a similar device – a pocket polarimeter for identification of glucose in urine. Therefore, the researchers possess the necessary experience and knowledge.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>