Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voracious black holes hide their appetite in dusty galaxies

05.08.2005


A UK-led team of astronomers reports today (August 4th) in Nature that they have tracked down an elusive population of black holes growing rapidly hidden behind clouds of dust. Their results suggest that most black hole growth takes place in dusty galaxies, solving astronomer’s headaches, as until now, the cosmic x-ray background suggested the existence of more growing black holes than they could find.



Growing black holes, known as quasars, are some of the brightest objects in the Universe and are seen by the light emitted as gas and dust spiral into the black hole. Quasars are situated in the inner-most regions of galaxies and can consume the equivalent mass of between ten and a thousand stars in one year! Astronomers believe that all quasars are surrounded by a dusty ring which hides them from sight on Earth in about half of cases.

However, examining the cosmic x-ray background, which is made up primarily of the emissions from quasars, astronomers realised that there should be many more obscured quasars than currently known. Objects surrounded by dust are hard to see with visible light, so the astronomers looked at infrared wavelengths, which are less likely to be reflected away. Using NASA’s Spitzer Space Telescope’s First Look Data, they were able to find a new population of obscured quasars. The new quasars have no spectra that can be seen and are thought to be hidden behind the dust of the galaxy itself rather than just a dust ring. The presence of lots of dust in a galaxy indicates that stars are still forming there. The researchers found 21 examples of these lost quasars in a relatively small patch of sky. All of the objects were confirmed as quasars by the National Radio Astronomy Observatory’s Very Large Array radio telescope, New Mexico, and the Particle Physics and Astronomy Research Council’s William Hershel Telescope on La Palma.


Alejo Martinez-Sansigre from the University of Oxford explains "We were missing a large population of obscured quasars, which had been inferred from studies at X-ray frequencies. This newly discovered population is large enough to account for the X-ray background, and now we wish to find out why there are more obscured quasars than unobscured ones".

From their study, the team believes that there are more quasars hidden by dust than not and that most black holes grow in short, efficient bursts at the heart of growing galaxies.

Professor Richard Wade, Chief Executive of the Particle Physics and Astronomy Research Council which supports the University of Oxford Astrophysics group said “The new population of Quasars suggest that throughout cosmic history most black holes grow in the heart of dusty active galaxies with stars still forming.”

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk/Nw/hidden_quasars.asp
http://www.pparc.ac.uk

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>