Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover anti-cancer mechanism that arrests early prostate cancer


Prostate cancer, the second leading cause of cancer death for men in the United States, is caused by changes in several tummor suppressor genes including PTEN and p53. Up to 70 percent of men with prostate cancer have lost one copy of the PTEN gene at the time of diagnosis, and p53 is absent in a high number of patients with advanced prostate cancer.

Scientists at Memorial Sloan-Kettering Cancer Center have found an unexpected effect of the interaction of these two genes in early stage prostate cancer. In a study published in the August 4 issue of Nature, researchers found that prostate tumor growth is arrested through a biological process called cellular senescence, in which cells stop proliferating and remain alive but fail to respond to normal growth signals.

This research provides some of the first evidence that this phenomenon, normally associated with stress and/or aging, also occurs in cancer both in animal models and in humans. Researchers suggest that drugs that support p53 function could delay progression of prostate cancer in Pten-deficient prostate cancer by triggering cellular senescence.

"In attempting to clarify the role of the Pten and p53 tumor suppressor genes in advanced prostate cancer cells, we unexpectedly discovered that acute loss of Pten results in increased, not decreased p53 function. This works to suppress the further development of cancer," said Pier Paolo Pandolfi, MD, PhD, Head of the Molecular and Developmental Biology Laboratory at Memorial Sloan-Kettering and the study’s senior author. "If we can maintain a higher level of p53 in prostate cancer and induce cellular senescence, the disease should remain stable. This provides new opportunities for therapeutic intervention."

In this experiment, three sets of transgenic mouse models were generated with either the Pten gene, Trp53 gene, or both Pten and Trp53 genes deleted from the prostate. These mice were compared with normal (wild type) mice in the same breeding system. The mice without Pten experienced tumor growth. Those without Trp53 did not. Those with both genes removed had accelerated tumor growth.

Researchers next followed a cohort of 128 mice that were either normal or had the same genetic alterations as described above. All mice had magnetic resonance imaging twice weekly for detection of prostate tumors. While the normal mice and the mice without Trp53 had no tumors at six months, the mice without Pten had small prostate tumors confined to the prostate. The mice without both Pten and Trp53 developed large prostate tumors and died by seven months. This showed that inactivation of Trp53 led to massive tumor growth and lethal prostate cancer only when Pten was depleted or inactivated.

"We realized that the senescence program is intrinsic to all cells, acting as an emergency defense system for prostate cells that are en route to becoming cancerous," explained Zhenbang Chen, PhD, a researcher in Dr. Pier Paolo Pandolfi’s laboratory and the paper’s first author. "As long as the cancer cells remain in the state of cellular senescence, the tipping point to cancer growth will be prevented."

To determine whether their findings were relevant to human prostate cancer, the researchers performed immunohistochemical analysis of prostate tissues. They detected a marker for activation of the senescence pathway when PTEN was inactivated. Next, they examined early stage human prostate cancer sections stained for the senescence marker under high magnification. The senescence marker was seen in area of hyperplasia that may precede the development of carcinoma.

"This study helps us to understand the molecular alterations and mechanisms that can lead to the development of prostate cancer and identifies targets for therapeutic attack," said Dr. Howard Scher, Chief of the Genitourinary Service at Memorial Sloan-Kettering and a co-author of the study. "We are also working to use these models to design more effective clinical tests by determining which combination of agents is most likely to be effective. We are already testing specific drugs to restore PTEN function, based on its role in prostate cancer development and progression."

Joanne Nicholas | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>