Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Via Internet, Australian-based researchers perform real-time cell surgery in California

02.08.2005


RoboLase technology may one day not only bridge laboratories but also allow physicians to perform medical procedures from distant locations

In an effort to combine sophisticated laser and Internet technologies, scientists in Australia have successfully performed laser surgery and “optical trapping” in a Southern California laboratory via the Internet.

The scientists used a new Internet-based laser scissor-and-tweezers technology called RoboLase, demonstrating the potential of using the technology for real-time research activities between laboratories and for physicians to perform medical procedures from distant locations.



In a proof-of-principle series of experiments, the scientists from UC Irvine, UC San Diego and the University of Queensland employed RoboLase to produce surgical holes in a distinct pattern of less than one micron in diameter (1/1000th of a millimeter) in single cells. Utilizing a control panel projected onto a computer screen, Queensland researchers were able to remotely perform the cell surgery on a laser microscope system in the Southern California laboratory.

“The speed and precision of the sub-cellular surgery was equal to what it would be like if we were doing the same surgery in our labs here in California,” said Michael Berns, professor of biomedical engineering at UCI and adjunct professor of bioengineering at UCSD, who led the development of the RoboLase technology.

In addition, the scientists were able to grab onto – or “optically trap” – swimming sperm in the California lab by operating optical-laser tweezers remotely from Australia. This was a particularly noteworthy accomplishment, because it demonstrated the amount of computer bandwidth (1 gigabyte/second) needed by the Australia and California research groups to observe and grab a fast-moving sperm with virtually no detectible delay in image transmission between the two laboratories.

“If there was a detectible delay in either the transmission or reception of the video images, our colleagues in Australia would not have been able to identify and trap a targeted sperm under the laser microscope in the California laboratory,” added Linda Shi of UCSD, one of the key developers of the unique computer software that was used in the sperm-trapping experiments.

According to Berns, who is the founding director of the Beckman Laser Institute at UCI, the general significance of this work is that researchers can now collaborate on experiments with scientists around the world using this expensive and sophisticated instrumentation without having to travel to a single laboratory site. It also serves to demonstrate that the Internet will become increasingly more useful and important for the actual conduct of scientific research and possibly for the delivery of selective medical procedures.

“This technology is now accessible to other scientists who may not have easy access to it,” added Elliot Botvinick, a Beckman Fellow at UCI and co-developer of the RoboLase technology. “And the instrumentation can be used over the Internet as a learning tool by students just about anywhere in the world.”

The research is being presented today at the International Society for Optical Engineering meeting in San Diego and will be published in the September issue of the journal Microscopy Research and Technique.

Halina Rubensztein-Dunlop, professor of physics and head of the team at the University of Queensland, participated in study, which received funding support from the United States Air Force, the National Institutes of Health and the Arnold and Mabel Beckman Foundation.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>