Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Via Internet, Australian-based researchers perform real-time cell surgery in California

02.08.2005


RoboLase technology may one day not only bridge laboratories but also allow physicians to perform medical procedures from distant locations

In an effort to combine sophisticated laser and Internet technologies, scientists in Australia have successfully performed laser surgery and “optical trapping” in a Southern California laboratory via the Internet.

The scientists used a new Internet-based laser scissor-and-tweezers technology called RoboLase, demonstrating the potential of using the technology for real-time research activities between laboratories and for physicians to perform medical procedures from distant locations.



In a proof-of-principle series of experiments, the scientists from UC Irvine, UC San Diego and the University of Queensland employed RoboLase to produce surgical holes in a distinct pattern of less than one micron in diameter (1/1000th of a millimeter) in single cells. Utilizing a control panel projected onto a computer screen, Queensland researchers were able to remotely perform the cell surgery on a laser microscope system in the Southern California laboratory.

“The speed and precision of the sub-cellular surgery was equal to what it would be like if we were doing the same surgery in our labs here in California,” said Michael Berns, professor of biomedical engineering at UCI and adjunct professor of bioengineering at UCSD, who led the development of the RoboLase technology.

In addition, the scientists were able to grab onto – or “optically trap” – swimming sperm in the California lab by operating optical-laser tweezers remotely from Australia. This was a particularly noteworthy accomplishment, because it demonstrated the amount of computer bandwidth (1 gigabyte/second) needed by the Australia and California research groups to observe and grab a fast-moving sperm with virtually no detectible delay in image transmission between the two laboratories.

“If there was a detectible delay in either the transmission or reception of the video images, our colleagues in Australia would not have been able to identify and trap a targeted sperm under the laser microscope in the California laboratory,” added Linda Shi of UCSD, one of the key developers of the unique computer software that was used in the sperm-trapping experiments.

According to Berns, who is the founding director of the Beckman Laser Institute at UCI, the general significance of this work is that researchers can now collaborate on experiments with scientists around the world using this expensive and sophisticated instrumentation without having to travel to a single laboratory site. It also serves to demonstrate that the Internet will become increasingly more useful and important for the actual conduct of scientific research and possibly for the delivery of selective medical procedures.

“This technology is now accessible to other scientists who may not have easy access to it,” added Elliot Botvinick, a Beckman Fellow at UCI and co-developer of the RoboLase technology. “And the instrumentation can be used over the Internet as a learning tool by students just about anywhere in the world.”

The research is being presented today at the International Society for Optical Engineering meeting in San Diego and will be published in the September issue of the journal Microscopy Research and Technique.

Halina Rubensztein-Dunlop, professor of physics and head of the team at the University of Queensland, participated in study, which received funding support from the United States Air Force, the National Institutes of Health and the Arnold and Mabel Beckman Foundation.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>