Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Make Breakthrough In Understanding Muscle Contraction

01.08.2005


Muscle bundles within the ureter showing different levels of calcium. The red colour shows the highest level of calcium, followed by green and blue


New research into muscle contraction will give scientists a better understanding of bladder problems and pain during childbirth.

Professor Susan Wray, who heads the UK’s top rated Department of Physiology, and Dr Ted Burdyga, are studying muscles in the wall of the ureter, which connects the kidney to the bladder, to understand how muscles respond to signals in the body telling them to contract or relax. Their research, supported by the Medical Research Council, is published in this week’s issue of Nature.

Muscles contract and relax to allow the body to perform crucial activity. Electrical signals tell the muscle when to contract, but when the muscle needs to relax, the signal is deliberately ignored. Until now scientists have been unable to understand how the body ignores this signal.



The team found that calcium, which allows muscle contraction to take place, enters the body’s cells in response to electrical signals. The calcium fills up a small structure in the cell and when this is full and starts to empty, it forces the muscle to relax by preventing any more calcium entering the cell, even when it receives contraction signals.

Professor Wray explains: “Electrical signals in nerves and muscles are important for all activity, from thinking to drinking. It is important for the body to be active, but it is also important for it to relax, so that it doesn’t over work itself. For example, in childbirth the uterus contracts and relaxes at regular intervals to allow a baby to pass through the birth canal.

“But when we get cramps for example, our muscle is contracting too hard or too often and in the case of the ureter it would cause kidney damage. It is therefore crucial that our muscles have periods of relaxation and we have now uncovered how this occurs. This understanding should allow doctors to work more accurately with the body’s natural mechanisms when treating patients.”

Joanna Robotham | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>