Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Make Breakthrough In Understanding Muscle Contraction

01.08.2005


Muscle bundles within the ureter showing different levels of calcium. The red colour shows the highest level of calcium, followed by green and blue


New research into muscle contraction will give scientists a better understanding of bladder problems and pain during childbirth.

Professor Susan Wray, who heads the UK’s top rated Department of Physiology, and Dr Ted Burdyga, are studying muscles in the wall of the ureter, which connects the kidney to the bladder, to understand how muscles respond to signals in the body telling them to contract or relax. Their research, supported by the Medical Research Council, is published in this week’s issue of Nature.

Muscles contract and relax to allow the body to perform crucial activity. Electrical signals tell the muscle when to contract, but when the muscle needs to relax, the signal is deliberately ignored. Until now scientists have been unable to understand how the body ignores this signal.



The team found that calcium, which allows muscle contraction to take place, enters the body’s cells in response to electrical signals. The calcium fills up a small structure in the cell and when this is full and starts to empty, it forces the muscle to relax by preventing any more calcium entering the cell, even when it receives contraction signals.

Professor Wray explains: “Electrical signals in nerves and muscles are important for all activity, from thinking to drinking. It is important for the body to be active, but it is also important for it to relax, so that it doesn’t over work itself. For example, in childbirth the uterus contracts and relaxes at regular intervals to allow a baby to pass through the birth canal.

“But when we get cramps for example, our muscle is contracting too hard or too often and in the case of the ureter it would cause kidney damage. It is therefore crucial that our muscles have periods of relaxation and we have now uncovered how this occurs. This understanding should allow doctors to work more accurately with the body’s natural mechanisms when treating patients.”

Joanna Robotham | alfa
Further information:
http://www.liv.ac.uk

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>