Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use ultrasound to describe subtle heart muscle motions

29.07.2005


Possible ’early warning system’ for heart problems



By using sound waves Mayo Clinic researchers have described subtle changes in the motion of the heart that are measurable by ultrasound and may improve understanding of heart function, and possibly be a noninvasive aid in predicting impending heart damage including heart attacks. The study could also contribute to optimal adjustment of cardiac pacemakers or perhaps better design of artificial hearts. The findings, published in the current Journal of Applied Physiology [JApplPhysiol.000191.2005], are based on "snapshots" of the mechanical transitions that occur between the main relaxation and contraction phases of the heartbeat. During these split-second transitions, the heart muscle "shifts gears" or prepares for the upcoming phase.

"This is only a start and much work is needed, but we are optimistic that our research will ultimately lead to development of noninvasive, broadly clinically available methods in diagnostic ultrasonography," says Marek Belohlavek, M.D., Ph.D., Mayo Clinic ultrasound imaging specialist and senior researcher of the study. "These methods could improve our chances in predicting cardiac events, so that preventive measures could be taken. And in patients with an existing heart condition, a detailed analysis of cardiac function could contribute to therapeutic optimization of heart performance." A patent application has been filed based on this research.


Researchers at the Mayo Clinic Translational Ultrasound Research Unit study the mechanical, biochemical and electrical aspects of these transitions which occur between phases of relaxation -- when the heart ventricles fill with a volume of blood -- and contraction -- when the heart ejects most of the blood volume into body circulation. Recently advanced, high-resolution ultrasound tissue Doppler imaging allowed them to experimentally measure these transitional tissue deformations, which last only milliseconds and are unnoticeable to the human eye. The technology allows slow-motion comparisons of these events separately between the inner and outer layers of the cardiac left ventricle. The researchers’ published measurements demonstrate how a rapid succession of motions occurring within tissue of the ventricular wall can appear chaotic if not observed closely and with high temporal resolution. The data also show how these transitions "reorganize" the ventricle to best perform its cycles of filling and ejection.

Significance of the Findings

Alterations in the cardiac mechanical transitions detected by ultrasound imaging can be used as early indicators to predict heart problems, without the risk of an invasive procedure. Such an early warning system could allow physicians to intervene with appropriate therapies and thus prevent problems that could lead to heart attack or heart failure. The knowledge may also help researchers to develop new and targeted treatments in some heart diseases or further improve cardiac pacemakers or artificial hearts.

Animal Model of Heart Functioning

Until recently, it was thought to be sufficient to study the function of the heart muscle during the relaxation and ejection phases of the heartbeat. Now, technological improvements in imaging have allowed studies of the heart muscle condition during the transitional phases. These short-lived mechanical transitions are successfully accomplished and prepare the heart for the next beat optimally only if the mechanical, biochemical and electrical events in the cardiac muscle work in concert and delivery of nutrients and oxygen are uninterrupted. Understanding these rapid transitional events not only improves fundamental understanding of heart functioning, but their dependence on various conditions makes these events vulnerable. This vulnerability translates into early changes in the transitional events detected by the state-of-the-art diagnostic imaging methods.

Using pigs as a very close model to human heart function, researchers established benchmarks for measuring normal and abnormal transitions in heart muscle layers. Accurate analyses of motion, deformation (strain), electrical impulses and other parameters characterize the transitional events between the phases of cardiac filling and ejection.

Lee Aase | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>