Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chronic sinus infection thought to be tissue issue, Mayo Clinic scientists show it’s snot


Findings call for radical change in treatment for the disease, researchers say

Mayo Clinic researchers have found that the cause of chronic sinus infections lies in the nasal mucus -- the snot -- not in the nasal and sinus tissue targeted by standard treatment. The findings will be published in the August issue of Journal of Allergy and Clinical Immunology and are available online at

"This strikingly teaches against what has been thought worldwide about the origin of chronic sinus infection: that inflammatory cells break down, releasing toxic proteins into the diseased airway tissue," says lead researcher and Mayo Clinic ear, nose and throat specialist Jens Ponikau, M.D. "Instead we found that these toxic proteins are released into the mucus, and not in the tissue. Therefore, scientists might need to take not only the tissue but also the mucus into account when trying to understand what causes chronic sinus infections and probably other airway diseases."

The findings could significantly change the way chronic sinus infection is treated, according to Dr. Ponikau.

"This has far-reaching implications," says Dr. Ponikau. "This suggests a beneficial effect in treatments that target primarily the underlying and presumably damage-inflicting nasal and sinus membrane inflammation, instead of the secondary bacterial infection that has been the primary target of treatments for the disease. Also, some surgeons have already started to change the way they do surgery for patients with chronic sinus infections, focusing now on removing the mucus, which is loaded with toxins from the inflammatory cells, rather than the tissue during surgery. Leaving the mucus behind might predispose patients for early recurrence of the chronic sinus infection."

Dr. Ponikau conducted this research along with Hirohito Kita, M.D., and Gail Kephart, Mayo Clinic allergic diseases researchers. David Sherris, M.D., and Eugene Kern, M.D., both former Mayo Clinic ear, nose and throat specialists who now work at the University at Buffalo, also participated in the project.

The team found that in chronic sinus infection patients, activated white blood cells (eosinophils) cluster in the nasal and sinus mucus and scatter a toxic protein (major basic protein) onto the nasal and sinus membrane. While major basic protein was not distributed in the nasal and sinus tissue, the level of this protein in the mucus of chronic sinus infection patients far exceeded that needed to damage the nasal and sinus membranes and make them more susceptible to infections such as chronic sinus infection.

To conduct this investigation, Dr. Ponikau and fellow researchers collected specimens from 22 consecutive Mayo Clinic chronic sinus infection patients undergoing endoscopic sinus surgery. The surgeons extracted the maximum possible tissue and mucus during the sinus surgery. The surgeons also extracted tissue and mucus from healthy patients undergoing septoplasty, surgery to fix a deviated septum, for comparison with the specimens from the chronic sinus infection patients. Through various forms of laboratory examination of the tissue and attached mucus, the investigators observed an abundance of major basic protein throughout the nasal and sinus mucus in all 22 specimens, but not in the tissue.

Chronic sinus infection is one of the most common chronic diseases in the United States, affecting 32 million adults, according to the National Center of Health Statistics. Chronic sinus infection produces nose and sinus problems characterized by stuffy nose, loss of sense of smell, postnasal drip, nasal discharge, and head and face pain lasting three months or longer. It notably decreases the quality of patients’ lives, impairing physical and social functioning, vitality and general health, according to the Mayo Clinic researchers.

Lisa Lucier | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>