Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MUHC researchers make headway in mystery of migraines


Scientists at the MUHC have made progress in understanding what causes migraines. The research, published in the newissue of the Proceedings of National Academy of Sciences (PNAS), reveals how gene mutations known to cause a form of inherited migraine - the kind that cause debilitating headaches and light flashes known as auras - target a cellular process involved in brain cell communication.

"A number of mutations have been shown to result in familial migraines," says Dr. Rhoda Blostein-a medical scientist at the Research Institute of the MUHC, professor in the Department of Medicine and Biochemistry at McGill University, and author of the new study. "Discovering genetic mutations that cause disease is important, but in order to develop treatments we must understand what these mutations do." By engineering several genetic mutations known to cause inherited migraines (type 2), and incorporating them into human cells, Dr. Blostein and her team showed several genotypes damage the operation of a tiny cellular mechanism commonly known as the Sodium Pump (Sodium/Potassium ATPase enzyme).

"Much of what happens in your brain-from memory to basic movement-is the result of the transmission of electrical impulses along nerve cells," says Dr. Blostein. "This is a basic process by which our brain cells communicate." By expelling sodium from the cell, and drawing potassium from outside, the sodium pump maintains a gradient of potassium, which is critical for the propagation of electrical signals along nerve cells. Like an air conditioner in the heat of summer, the sodium pump is a massive energy hog, consuming around 30% of the energy produced by the cell in order to perform this vital cellular process.

Of particular interest in this study is that some mutations cause migraines by reducing sodium pump efficiency-akin to reducing the power supply. "This is the first time that a genetic mutation of the sodium pump has been shown to cause disease by changing the properties of this biochemical process, rather than completely turning it off," notes Dr. Blostein. This new understanding of how genetic mutations cause migraines takes us one step closer to the development of improved treatments, providing hope to millions of migraine sufferers.

This study was funded by the Canadian Institutes of Health Research (CIHR).

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

Ian Popple | MUHC - Pressestlle
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>