Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Heat Spreader for Epileptic Seizure Treatment Device

27.07.2005


Graphic courtesy of G. P. "Bud" Peterson


Rensselaer Polytechnic Institute researchers are developing a tiny, highly efficient heat spreader to be used in a new device to be implanted in the brain of patients who suffer from severe epileptic seizures. The implant device is designed to detect and arrest epileptic seizures as they begin by cooling a small region of the brain, thereby effectively blocking the erratic electrical activity.

G. P. “Bud” Peterson, provost and professor of mechanical, aerospace, and nuclear engineering at Rensselaer, and his team are collaborating with researchers at Washington University School of Medicine in St. Louis to design, model, test, and develop the implant device. The research and the potential of the device are featured in the July 16 issue of New Scientist.

The heat spreader being developed at Rensselaer utilizes a phase-change heat process, the same mechanism that the human body uses to cool itself, to transfer and distribute heat in the brain. The fundamental principal behind the operation of the heat spreader is evaporation and condensation, similar to perspiration. Using a pure substance, saturated conditions are created inside the heat pipe, resulting in evaporation in the heated regions. Heat entering the pipe turns the liquid water to vapor, which is forced along the pipe by high pressure where it is condensed in the cooler regions. The dissipated heat is then pushed out of the heat pipe, and the wicking structure pumps the liquid back to the evaporator.



“The heat spreader we created for this implant device acts as a very efficient thermal conductor, spreading and releasing the heat without minimal temperature increase, thereby preventing any potential tissue damage to the brain,” said Peterson. “The brain can tolerate temperature reductions on the order of 18 to 20°C without sustaining permanent damage. However, the brain cannot tolerate temperature increases over 0.5°C. This requires that the heat both absorbed and generated by the device be spread across a much larger surface area.”

Implanted on the neocortex of the brain, close to where erratic electrical activity is causing the epileptic seizure, the implant device is designed to detect the unusual level of electrical activity that accompanies these types of seizures. The implant device then is activated to cool a small area of the brain from approximately 38°C (100°F) to 20°C (68°F) to render that part of the brain temporarily non-functional and seizure-free, according to researchers.

The implant device works as a very small “thermoelectric refrigerator,” approximately 0.25 inches on a side, consisting of many tiny metal semiconductor junctions connected between two ceramic electrodes to create an electronic circuit. The result is an implantable device in which one side is cooled and other is heated as electrical current moves through it. The heat spreader being developed by Peterson and his team, allows the heat generated and absorbed by the implant device to be effectively released without a significant increase in temperature.

The implant device has been successfully tested on rats and has been approved by the National Institutes of Health (NIH) for testing in primates. Researchers expect the device will provide a new methodology for the treatment of epileptic seizures in humans.

Peterson has conducted research on heat pipes and related two-phase heat transfer devices for 25 years, holds eight patents, and is the author or co-author of more than 145 peer-reviewed journal articles in fields as diverse as electronics and spacecraft thermal control, energy recovery systems, biomedical applications, and the cooling of valve stems in internal combustion engines.

About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>