Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers figure out how hearts fail

22.07.2005


New knowledge can improve current therapies and shape new ones Researchers have determined how metabolic pathways differ between healthy and failing hearts. Normally, a heart derives its energy from a balance of fatty acids and carbohydrates, specifically glucose.



But Dr. Gary Lopaschuk, a pharmacologist and professor in the University of Alberta Department of Pediatrics, and his colleagues in the U.S. and Italy have found that during the early stages of heart failure, the heart uses too much fatty acid and not enough carbohydrate; and then, later on, the heart doesn’t use enough fat.

Lopaschuk thinks that better treatments for heart failure patients may be available now that they have discovered that the type of "fuel" that the heart uses can contribute to the severity of heart failures. There are existing drugs that can make the heart more productive, but they don’t remedy the fact that the heart is still inefficient because a lot of oxygen is necessary for it to drive the same amount of contractile activity.


"Many forms of heart diseases have many pharmacological therapeutic approaches to treat it. But heart failure is a difficult one. If you’re diagnosed with heart failure, your five-year prognosis isn’t that good. There’s a high likelihood of mortality. So there’s a major push to find new approaches to treat heart failure," Lopaschuk said.

"Heart failure is not a situation where the heart completely fails, it is a condition in which the heart fails to provide even itself with enough blood under certain conditions," Lopaschuk added.

Heart failure can be brought on by heart attack, congenital heart defects, viral infections, hypertension and more. Because of this, Lopaschuk, an expert in regulatory pathways involved in energy metabolism in the heart, worked with his colleagues to find out how metabolic pathways differ between healthy and failing hearts.

"The heart has a huge need for energy. Everyone talks about the brain having a high energy demand, which it does, but the main energy user is the heart itself. Even though it pumps blood and oxygen around the rest of the body, the heart itself also consumes a huge amount of the oxygen that it takes in. And it’s not unreasonable--it beats 24 hours a day," Lopaschuk said.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>