Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers figure out how hearts fail

22.07.2005


New knowledge can improve current therapies and shape new ones Researchers have determined how metabolic pathways differ between healthy and failing hearts. Normally, a heart derives its energy from a balance of fatty acids and carbohydrates, specifically glucose.



But Dr. Gary Lopaschuk, a pharmacologist and professor in the University of Alberta Department of Pediatrics, and his colleagues in the U.S. and Italy have found that during the early stages of heart failure, the heart uses too much fatty acid and not enough carbohydrate; and then, later on, the heart doesn’t use enough fat.

Lopaschuk thinks that better treatments for heart failure patients may be available now that they have discovered that the type of "fuel" that the heart uses can contribute to the severity of heart failures. There are existing drugs that can make the heart more productive, but they don’t remedy the fact that the heart is still inefficient because a lot of oxygen is necessary for it to drive the same amount of contractile activity.


"Many forms of heart diseases have many pharmacological therapeutic approaches to treat it. But heart failure is a difficult one. If you’re diagnosed with heart failure, your five-year prognosis isn’t that good. There’s a high likelihood of mortality. So there’s a major push to find new approaches to treat heart failure," Lopaschuk said.

"Heart failure is not a situation where the heart completely fails, it is a condition in which the heart fails to provide even itself with enough blood under certain conditions," Lopaschuk added.

Heart failure can be brought on by heart attack, congenital heart defects, viral infections, hypertension and more. Because of this, Lopaschuk, an expert in regulatory pathways involved in energy metabolism in the heart, worked with his colleagues to find out how metabolic pathways differ between healthy and failing hearts.

"The heart has a huge need for energy. Everyone talks about the brain having a high energy demand, which it does, but the main energy user is the heart itself. Even though it pumps blood and oxygen around the rest of the body, the heart itself also consumes a huge amount of the oxygen that it takes in. And it’s not unreasonable--it beats 24 hours a day," Lopaschuk said.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>