Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from Chinese medicine shows promise in head and neck cancer

19.07.2005


A compound derived from cottonseed could help improve the effectiveness of chemotherapy at treating head and neck cancer, researchers at the University of Michigan Comprehensive Cancer Center have found.



The findings, which appear in the July issue of the journal Molecular Cancer Therapeutics, could lead to a treatment that provides an effective option to surgically removing the cancer, helping patients preserve vital organs involved in speech and swallowing.

While new treatments in head and neck cancer have allowed some patients to undergo chemotherapy and radiation therapy instead of surgery, this form of cancer is often resistant to chemotherapy. When the cancer does not respond to these powerful drugs, patients must resort to surgery.


"Patients really benefit long-term by avoiding surgery because the side effects of surgery for head and neck cancer can be particularly difficult for patients. It affects how you talk, how you swallow and how you breathe," says study author Carol Bradford, M.D., professor of otolaryngology at the U-M Medical School and co-director of the Head and Neck Oncology Program at the U-M Comprehensive Cancer Center.

The compound, (-)-gossypol, works to regulate a protein called Bcl-xL that’s overexpressed in cancer cells and makes these cells survive when they shouldn’t. Shaomeng Wang, Ph.D., co-director of the Molecular Therapeutics Program at the U-M Comprehensive Cancer Center, discovered (-)-gossypol, a compound derived from a component of Chinese medicine.

Gossypol comes from cottonseed and was once used in China as a male contraceptive. More recently, it’s been tested as a cancer treatment. Wang found the negative isomer of gossypol binds at a site to block the active Bcl-xL protein. A prior study conducted by researchers in the U-M Head and Neck Oncology Program showed Bcl-xL protein is often highly expressed in head and neck cancers.

In this study, researchers developed head and neck cancer cell cultures resistant to the chemotherapy drug cisplatin, a platinum-based drug frequently used to treat this type of cancer. They found cisplatin killed cells with a mutant form of the protein p53, but cells with normal p53 and high levels of Bcl-xL were resistant. The researchers then treated these cisplatin-resistant cell lines with (-)-gossypol and found that (-)-gossypol induced the drug resistant tumor cells to undergo programmed cell death.

"These cisplatin resistant cells are exquisitely sensitive to (-)-gossypol. We can induce cell death in 70 percent to 90 percent of cells. This is a very impressive induction of cell death. It’s because we are targeting the pathways these cells need to survive," says study author Thomas Carey, Ph.D., co-director of the Head and Neck Oncology Program at the U-M Comprehensive Cancer Center and a professor in the U-M School of Dentistry and the U-M Medical School.

To test the principle that Bcl-xL and non-mutant p53 determine resistance to cisplatin in head and neck cancer cells, lead study author Joshua Bauer, a U-M graduate student in pharmacology, overexpressed Bcl-xL in tumor cells with mutant or non-mutant p53. Only cells with non-mutant p53 and high Bcl-xL became resistant to cisplatin. Bauer then treated these cells with (-)-gossypol and induced cell death.

To further confirm the importance of Bcl-xL in cisplatin resistance, the researchers used a technique called inhibitory RNA to shut off expression of Bcl-xL in the drug-resistant cells. These cells became sensitive to cisplatin when Bcl-xL was turned off, confirming its role in drug resistance.

"We believe novel agents that target Bcl-xL can improve survival for our patients," Carey says.

In a previous study published in November 2004 in Clinical Cancer Research, Bradford, Carey and their team treated cell cultures of head and neck squamous cell carcinoma with the (-)-gossypol compound and found it inhibited tumor cell growth. Additional testing in animals was also positive and showed (-)-gossypol did not harm surrounding healthy tissue.

Researchers hope to begin a clinical trial in head and neck cancer patients within a year, testing whether (-)-gossypol can be used along with chemotherapy to create a better response and avoid surgery.

More than 29,000 people will be diagnosed in 2005 with head and neck cancers, which include cancer of the tongue, mouth, throat and voice box.

University of Michigan holds a patent on the negative isomer, (-)-gossypol, and has licensed the technology to Ascenta Therapeutics of San Diego, Calif., for commercial development. Wang is one of three U-M Medical School faculty members who founded the company and has significant financial interest.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancer.med.umich.edu/clinic/headneckclinic.htm

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>