Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Every second counts for shaken babies

18.07.2005


Brisbane researchers are hoping to prove the dangers of shaking babies by creating a model that will show how quickly babies can be injured.



The University of Queensland research team of civil engineers and a child health expert is working on a numerical model that will tell when a baby’s brain could be damaged by violent shaking.

Shaking can cause Shaken Baby Syndrome which swells a baby’s brain and triggers internal bleeding.


Shaken Baby Syndrome causes death in one third of cases while other babies will have permanent brain damage.

The research team has been using a replica of a six-week-old baby to refine their numerical model of a baby brain which consists of complex formulae.

They record the doll’s head and neck movements when it is shaken and compare these with brain scans and video of injured babies.

"From our analysis we can predict what sort of stresses are within the brain and these stresses will tell us whether there are injuries," UQ civil engineering PhD student Zac Couper said.

Mr Couper is working with his supervisor UQ civil engineering Senior Lecturer Dr Faris Albermani and Department of Child Health Clinical Associate Professor Dr Denis Stark.

Dr Albermani, who normally works with power lines or buildings, got involved when Dr Stark approached UQ’s Department of Civil Engineering to see if it was possible to simulate the mechanics of Shaken Baby Syndrome.

He said the model would not only help predict injuries but could help form guidelines for caring for and handling babies.

It would also allow more accurate evidence to be given in court and help develop safer playgrounds and play equipment.

The syndrome has been used in a number of Australian criminal cases but is being challenged in Britain by four people contesting convictions for child abuse.

"The area is not well understood as to exactly what sort of shaking will cause damage," Dr Albermani said.

"Some medical literature says even normal baby handling like tossing or swinging could cause these injuries. Others say, no, there has to be impact."

The team will give its second presentation about its progress to the Abused Child Trust next month but it is seeking further funding to continue its work.

Miguel Holland | EurekAlert!
Further information:
http://www.uq.edu.au

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>