Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle repair: Making a good system better, faster; implications for aging, disease

13.07.2005


Complicated plasminogen system yields potential therapeutic target; implications for aging, liver, lungs, heart, and degenerative diseases

Skeletal muscles naturally repair themselves very efficiently after injury. But when they don’t, otherwise successful recovery following damage from overuse during exercise, surgery or trauma can be stymied. Furthermore, as we age, muscle repair slows noticeably, and in Duchenne Muscular Dystrophy and other degenerative muscle diseases, normal repair functions can’t cope with disease progression.

Researchers from the University of Illinois-Chicago (UIC) and University of Michigan report that while "skeletal muscles possess a remarkable capacity for regeneration" and self-repair, deficiency in the plasminogen activator inhibitor-1 (PAI-1) actually promotes muscle regeneration, making PAI-1 "a therapeutic target for enhancing muscle regeneration."



Moreover, they realized that the plasminogen system interacts with the inflammatory, growth factor and other systems in a complicated manner, indicating that the plasminogen system likely has multiple functions.

For instance, Koh noted that "the inflammatory process can be a double-edged sword for muscle repair. Inflammatory cells can exacerbate an injury, but they also can produce substances that may be required for repair. We would speculate that anti-inflammatory drugs may not be such a good idea if they’re inhibiting repair-promoting macrophage functions; they may give some short-term relief following injury, but muscle repair may not be as efficient as it would be without these drugs."

Striking, rapid differences in strength recovery

In the current study, the investigators found that in mice lacking PAI-1, the activity of an enzyme called urokinase-type plasminogen activator (uPA) was increased in damaged muscle. The result was improved recovery of muscle function and accelerated muscle repair associated with faster increases in proteins such as the myogenic transcription factor MyoD. "In other words, we observed accelerated repair over and above what is already a naturally efficient system," lead author Timothy J. Koh of UIC said later.

The study, entitled "Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration," appears in the July issue of the American Journal of Physiology-Cell Physiology, published by the American Physiological Society. The research was conducted by Timothy J. Koh, Scott C. Bryer and Augustina M. Pucci at the University of Illinois at Chicago, and Thomas H. Sisson at the University of Michigan.

The study showed quite striking differences in how normal (wild type, or WT), PAI-1 deficient (null) and uPA null mice recovered from muscle injury. Five days after an injury, PAI-1 null mice had recouped nearly 40% of pre-injury muscle force, significantly greater than WT or uPA null mice that produced only 20% of pre-injury muscle force.

After 10 days, PAI-1 null muscle force remained significantly greater than WT (55% versus 40% of pre-injury force), with uPA null mice still showing little, if any, recovery. By day 20, the three mouse strains’ relative muscle strength followed a similar pattern: PAI-1 null 90%, WT 75% and uPA null 35% of pre-injury force.

Koh noted that PAI levels normally increase in muscle after damage, which may limit the repair process. "So the question is," Koh continued, "if PAI-1 limits recovery, why does it increase after injury? It may be that PAI-1 is a multifunctional molecule and does some things that we haven’t yet identified and measured." Indeed the paper says that "in addition to influencing myogenesis directly, PAI-1 may modulate regeneration by regulating the inflammatory response (and) may also modulate muscle regeneration through the regulation of extracellular matrix turnover (or) by regulating the bioactivity of a variety of growth factors."

Role of macrophages likely important

Confirming earlier studies indicating a critical role of the plasminogen system in muscle repair, the UIC-Michigan team reported that deficiency in uPA pretty much eliminated muscle regeneration after injury. Muscles in animals without uPA showed no evidence of repair and little accumulation of macrophages, roaming cells that protect the body against foreign substances. PAI-1 deficient muscles showed "increased macrophage accumulation (and) the extent of macrophage accumulation correlated with both the clearance of (damaged) protein after injury and the efficiency of regeneration," according to the report.

Macrophage accumulation was impaired in injured muscle of uPA null mice and increased in PAI-1 null mice, compared to WT mice. At days three and five, macrophage accumulation in WT muscle was significantly greater than in uninjured control levels, while macrophage accumulation in PAI-1 null muscle was greater than in WT. Macrophage accumulation for uPA null mice was almost absent and significantly less than in WT mice.

Implications for aging and muscle diseases, and next steps

Koh noted that researchers are studying the role of the plasminogen system in repair of different tissues, including liver, lungs and the heart. The plasminogen system may be critical for efficient repair of many tissues and for minimizing scar formation.

Koh noted the following specific areas of interest:

  • PAI-1 levels appear to increase with aging, and may explain, in part, the loss of repair capacity as we age. Koh plans to see whether manipulating PAI-1 levels can restore muscle repair in old muscles.
  • PAI-1 levels also appear to be higher in muscle diseases like Duchenne Muscular Dystrophy. In such diseases, muscle repair processes can’t keep up with the degeneration caused by the disease. The plasminogen system may represent a therapeutic target for improving muscle function in these instances.
  • The plasminogen system likely has multiple roles in muscle repair. Understanding how the plasminogen system works in skeletal muscle may give some clues to improving repair of different tissues, especially heart, which is similar in many ways to skeletal muscle.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>