Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle repair: Making a good system better, faster; implications for aging, disease

13.07.2005


Complicated plasminogen system yields potential therapeutic target; implications for aging, liver, lungs, heart, and degenerative diseases

Skeletal muscles naturally repair themselves very efficiently after injury. But when they don’t, otherwise successful recovery following damage from overuse during exercise, surgery or trauma can be stymied. Furthermore, as we age, muscle repair slows noticeably, and in Duchenne Muscular Dystrophy and other degenerative muscle diseases, normal repair functions can’t cope with disease progression.

Researchers from the University of Illinois-Chicago (UIC) and University of Michigan report that while "skeletal muscles possess a remarkable capacity for regeneration" and self-repair, deficiency in the plasminogen activator inhibitor-1 (PAI-1) actually promotes muscle regeneration, making PAI-1 "a therapeutic target for enhancing muscle regeneration."



Moreover, they realized that the plasminogen system interacts with the inflammatory, growth factor and other systems in a complicated manner, indicating that the plasminogen system likely has multiple functions.

For instance, Koh noted that "the inflammatory process can be a double-edged sword for muscle repair. Inflammatory cells can exacerbate an injury, but they also can produce substances that may be required for repair. We would speculate that anti-inflammatory drugs may not be such a good idea if they’re inhibiting repair-promoting macrophage functions; they may give some short-term relief following injury, but muscle repair may not be as efficient as it would be without these drugs."

Striking, rapid differences in strength recovery

In the current study, the investigators found that in mice lacking PAI-1, the activity of an enzyme called urokinase-type plasminogen activator (uPA) was increased in damaged muscle. The result was improved recovery of muscle function and accelerated muscle repair associated with faster increases in proteins such as the myogenic transcription factor MyoD. "In other words, we observed accelerated repair over and above what is already a naturally efficient system," lead author Timothy J. Koh of UIC said later.

The study, entitled "Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration," appears in the July issue of the American Journal of Physiology-Cell Physiology, published by the American Physiological Society. The research was conducted by Timothy J. Koh, Scott C. Bryer and Augustina M. Pucci at the University of Illinois at Chicago, and Thomas H. Sisson at the University of Michigan.

The study showed quite striking differences in how normal (wild type, or WT), PAI-1 deficient (null) and uPA null mice recovered from muscle injury. Five days after an injury, PAI-1 null mice had recouped nearly 40% of pre-injury muscle force, significantly greater than WT or uPA null mice that produced only 20% of pre-injury muscle force.

After 10 days, PAI-1 null muscle force remained significantly greater than WT (55% versus 40% of pre-injury force), with uPA null mice still showing little, if any, recovery. By day 20, the three mouse strains’ relative muscle strength followed a similar pattern: PAI-1 null 90%, WT 75% and uPA null 35% of pre-injury force.

Koh noted that PAI levels normally increase in muscle after damage, which may limit the repair process. "So the question is," Koh continued, "if PAI-1 limits recovery, why does it increase after injury? It may be that PAI-1 is a multifunctional molecule and does some things that we haven’t yet identified and measured." Indeed the paper says that "in addition to influencing myogenesis directly, PAI-1 may modulate regeneration by regulating the inflammatory response (and) may also modulate muscle regeneration through the regulation of extracellular matrix turnover (or) by regulating the bioactivity of a variety of growth factors."

Role of macrophages likely important

Confirming earlier studies indicating a critical role of the plasminogen system in muscle repair, the UIC-Michigan team reported that deficiency in uPA pretty much eliminated muscle regeneration after injury. Muscles in animals without uPA showed no evidence of repair and little accumulation of macrophages, roaming cells that protect the body against foreign substances. PAI-1 deficient muscles showed "increased macrophage accumulation (and) the extent of macrophage accumulation correlated with both the clearance of (damaged) protein after injury and the efficiency of regeneration," according to the report.

Macrophage accumulation was impaired in injured muscle of uPA null mice and increased in PAI-1 null mice, compared to WT mice. At days three and five, macrophage accumulation in WT muscle was significantly greater than in uninjured control levels, while macrophage accumulation in PAI-1 null muscle was greater than in WT. Macrophage accumulation for uPA null mice was almost absent and significantly less than in WT mice.

Implications for aging and muscle diseases, and next steps

Koh noted that researchers are studying the role of the plasminogen system in repair of different tissues, including liver, lungs and the heart. The plasminogen system may be critical for efficient repair of many tissues and for minimizing scar formation.

Koh noted the following specific areas of interest:

  • PAI-1 levels appear to increase with aging, and may explain, in part, the loss of repair capacity as we age. Koh plans to see whether manipulating PAI-1 levels can restore muscle repair in old muscles.
  • PAI-1 levels also appear to be higher in muscle diseases like Duchenne Muscular Dystrophy. In such diseases, muscle repair processes can’t keep up with the degeneration caused by the disease. The plasminogen system may represent a therapeutic target for improving muscle function in these instances.
  • The plasminogen system likely has multiple roles in muscle repair. Understanding how the plasminogen system works in skeletal muscle may give some clues to improving repair of different tissues, especially heart, which is similar in many ways to skeletal muscle.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>