Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle repair: Making a good system better, faster; implications for aging, disease

13.07.2005


Complicated plasminogen system yields potential therapeutic target; implications for aging, liver, lungs, heart, and degenerative diseases

Skeletal muscles naturally repair themselves very efficiently after injury. But when they don’t, otherwise successful recovery following damage from overuse during exercise, surgery or trauma can be stymied. Furthermore, as we age, muscle repair slows noticeably, and in Duchenne Muscular Dystrophy and other degenerative muscle diseases, normal repair functions can’t cope with disease progression.

Researchers from the University of Illinois-Chicago (UIC) and University of Michigan report that while "skeletal muscles possess a remarkable capacity for regeneration" and self-repair, deficiency in the plasminogen activator inhibitor-1 (PAI-1) actually promotes muscle regeneration, making PAI-1 "a therapeutic target for enhancing muscle regeneration."



Moreover, they realized that the plasminogen system interacts with the inflammatory, growth factor and other systems in a complicated manner, indicating that the plasminogen system likely has multiple functions.

For instance, Koh noted that "the inflammatory process can be a double-edged sword for muscle repair. Inflammatory cells can exacerbate an injury, but they also can produce substances that may be required for repair. We would speculate that anti-inflammatory drugs may not be such a good idea if they’re inhibiting repair-promoting macrophage functions; they may give some short-term relief following injury, but muscle repair may not be as efficient as it would be without these drugs."

Striking, rapid differences in strength recovery

In the current study, the investigators found that in mice lacking PAI-1, the activity of an enzyme called urokinase-type plasminogen activator (uPA) was increased in damaged muscle. The result was improved recovery of muscle function and accelerated muscle repair associated with faster increases in proteins such as the myogenic transcription factor MyoD. "In other words, we observed accelerated repair over and above what is already a naturally efficient system," lead author Timothy J. Koh of UIC said later.

The study, entitled "Mice deficient in plasminogen activator inhibitor-1 have improved skeletal muscle regeneration," appears in the July issue of the American Journal of Physiology-Cell Physiology, published by the American Physiological Society. The research was conducted by Timothy J. Koh, Scott C. Bryer and Augustina M. Pucci at the University of Illinois at Chicago, and Thomas H. Sisson at the University of Michigan.

The study showed quite striking differences in how normal (wild type, or WT), PAI-1 deficient (null) and uPA null mice recovered from muscle injury. Five days after an injury, PAI-1 null mice had recouped nearly 40% of pre-injury muscle force, significantly greater than WT or uPA null mice that produced only 20% of pre-injury muscle force.

After 10 days, PAI-1 null muscle force remained significantly greater than WT (55% versus 40% of pre-injury force), with uPA null mice still showing little, if any, recovery. By day 20, the three mouse strains’ relative muscle strength followed a similar pattern: PAI-1 null 90%, WT 75% and uPA null 35% of pre-injury force.

Koh noted that PAI levels normally increase in muscle after damage, which may limit the repair process. "So the question is," Koh continued, "if PAI-1 limits recovery, why does it increase after injury? It may be that PAI-1 is a multifunctional molecule and does some things that we haven’t yet identified and measured." Indeed the paper says that "in addition to influencing myogenesis directly, PAI-1 may modulate regeneration by regulating the inflammatory response (and) may also modulate muscle regeneration through the regulation of extracellular matrix turnover (or) by regulating the bioactivity of a variety of growth factors."

Role of macrophages likely important

Confirming earlier studies indicating a critical role of the plasminogen system in muscle repair, the UIC-Michigan team reported that deficiency in uPA pretty much eliminated muscle regeneration after injury. Muscles in animals without uPA showed no evidence of repair and little accumulation of macrophages, roaming cells that protect the body against foreign substances. PAI-1 deficient muscles showed "increased macrophage accumulation (and) the extent of macrophage accumulation correlated with both the clearance of (damaged) protein after injury and the efficiency of regeneration," according to the report.

Macrophage accumulation was impaired in injured muscle of uPA null mice and increased in PAI-1 null mice, compared to WT mice. At days three and five, macrophage accumulation in WT muscle was significantly greater than in uninjured control levels, while macrophage accumulation in PAI-1 null muscle was greater than in WT. Macrophage accumulation for uPA null mice was almost absent and significantly less than in WT mice.

Implications for aging and muscle diseases, and next steps

Koh noted that researchers are studying the role of the plasminogen system in repair of different tissues, including liver, lungs and the heart. The plasminogen system may be critical for efficient repair of many tissues and for minimizing scar formation.

Koh noted the following specific areas of interest:

  • PAI-1 levels appear to increase with aging, and may explain, in part, the loss of repair capacity as we age. Koh plans to see whether manipulating PAI-1 levels can restore muscle repair in old muscles.
  • PAI-1 levels also appear to be higher in muscle diseases like Duchenne Muscular Dystrophy. In such diseases, muscle repair processes can’t keep up with the degeneration caused by the disease. The plasminogen system may represent a therapeutic target for improving muscle function in these instances.
  • The plasminogen system likely has multiple roles in muscle repair. Understanding how the plasminogen system works in skeletal muscle may give some clues to improving repair of different tissues, especially heart, which is similar in many ways to skeletal muscle.

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>