Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new insight into cellular metabolism by Cornell researchers will help neurologists better interpret diagnostic tests

12.07.2005


Illustration by H.D. Vishwarao, K.A. Kasischke, M.A. Williams and W.W. Webb
The image above is from the cover of the July 1 issue of the Journal of Biological Chemistry and relates to a "paper of the week" article titled "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotrophy," by H.D. Vishwasrao, A.A. Heikal, K.A. Kasischke and W.W. Webb. Caption: "Metabolic dynamics in the brain are imaged using the fluorescence of endogenous reduced beta-nicotinamide adenine dinucleotide (NADH). Fluorescence measurements, however, are complicated by the dependence of the quantum efficiency of NADH on its free/bound state. Time-resolved fluorescence anisotropy discriminates free/bound NADH and shows a preferential increase in free NADH during the normoxic (blue curve) to hypoxic (red curve) metabolic transition."


By discovering a crucial piece of submicroscopic information about how the brain converts fuel into energy for neurons, Cornell University biophysicists have gleaned new insights into brain cell metabolism that will allow neurologists to better interpret data from such diagnostic tests as positron emission tomography (PET) scans and a specialized magnetic resonance imaging (MRI) test.

The discovery uncovers a key piece of information that’s been missing for years about cell metabolism -- how the compound beta-nicotinamide adenine dinucleotide (NADH) interacts in the mitochondria. The researchers discovered that some molecules of NADH are bound to other molecules in the mitochondria, while some are free in two different conformations. Whether NADH is bound or free affects how much it fluoresces in diagnostic tests -- and not knowing this has led scientists in the past to misjudge the amount of activity in neural cells.

The findings, published as a paper of the week in the July 1 issue of the Journal of Biological Chemistry (Vol. 280), are based on research in the biophysics lab directed by Watt W. Webb, the S.B. Eckert Professor in Engineering at Cornell. The journal’s cover illustration was designed by Webb with images from his biophysics lab by Karl Kasischke, Harshad Vishwasrao and Dan Dombeck.



Vishwasrao, the lead author of the paper and a former graduate student of Webb’s, was able to differentiate between bound and the two forms of free states of NADH molecules based on the rate that molecules rotate, or don’t rotate, over nanoseconds of time. He used a technique developed by Ahmed Heikal (now of Pennsylvania State University) in Webb’s lab.

NADH concentration has been used as an indicator for cell metabolism for some 50 years, but harmful levels of ultraviolet radiation were required to induce the fluorescence needed for the measurements. Webb and his colleagues, however, devised a technique several years ago that uses short, intense laser pulses of harmless infrared instead of ultraviolet radiation. The technique, called multi-photon laser scanning microscopy (MPLSM), allowed the Vishwasrao team to measure NADH levels in cells with controlled levels of oxygen saturation without damaging the cells. And unlike other methods, such as PET and blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI), MPLSM can simultaneously show how the orientation of NADH molecules changes (by measuring their anisotropy) within fractions of a nanosecond.

The results, said Vishwasrao, now a postdoctoral fellow at Columbia University, indicate that the unbound NADH molecules rotate much more quickly -- and therefore lose their fluorescence more quickly -- than bound NADH molecules.

"One bound NADH molecule is about as bright as 10 free ones," said Vishwasrao. "When we first got evidence that there was free NADH, we thought we made a big mistake. We thought we were crazy. We went back, and the more we talked about it, and the more experiments we did, it became clear. Other groups were seeing the same thing."

When the team used the data to calculate the proportion of bound-to-free NADH molecules in a section of tissue, they found that their calculations resolved inconsistencies that had troubled researchers for years. "The effect is large enough to account for the frequently seen problems," said Webb.

NADH is a good indicator of cell activity for several reasons. First, the molecule is ubiquitous in the mitochondria, where oxidative metabolism takes place. It also naturally fluoresces, which means it can be detected without adding artificial tracers or dyes. And because NADH is converted in the metabolic process to non-fluorescent NAD+, researchers can gauge how much oxidation is occurring in a cell based on its fluorescence.

With this new information, Vishwasrao said, scientists and physicians who study the effects of stroke, Alzheimer’s disease and other brain injuries and pathologies will be better equipped to interpret quantitative data from diagnostic techniques they’ve been using -- without fully understanding -- for years.

"The role of multi-photon imaging and spectroscopy of NADH is not to replace other imaging techniques," he said, "but rather to provide a more detailed microscopic framework of brain metabolic dynamics within which macroscopic techniques, such as BOLD-fMRI , PET and optical scanning, can interpret their respective detected signals."

Webb’s lab, the Developmental Resource for Biophysical Imaging Opto-electronics (DRBIO), has yielded other significant advances recently. Last year, Kasischke, formerly of Cornell and now a resident in neurology in Germany, used MPLSM to tease apart the metabolic functions of neurons (nerve cells) and astrocytes (star-shaped cells that provide neurons with fuel). Kasischke’s paper filled an important piece of the metabolic puzzle by showing that brain cells have distinct roles in the metabolic process. His team (which included Vishwasrao and Webb) found that neurons use oxygen to convert carbohydrate to energy (a process called oxidation) and that astrocytes kick in subsequently to produce lactate fuel (a process called glycolysis). This confirmed a controversial function based on the hypothesis known as the astrocyte-neuron lactate shuttle, and the finding helped researchers to better understand how the metabolic process works on a microscopic level.

Vishwasrao’s current paper is co-authored by Kasischke, Webb and Heikal.

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>