Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new insight into cellular metabolism by Cornell researchers will help neurologists better interpret diagnostic tests

12.07.2005


Illustration by H.D. Vishwarao, K.A. Kasischke, M.A. Williams and W.W. Webb
The image above is from the cover of the July 1 issue of the Journal of Biological Chemistry and relates to a "paper of the week" article titled "Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotrophy," by H.D. Vishwasrao, A.A. Heikal, K.A. Kasischke and W.W. Webb. Caption: "Metabolic dynamics in the brain are imaged using the fluorescence of endogenous reduced beta-nicotinamide adenine dinucleotide (NADH). Fluorescence measurements, however, are complicated by the dependence of the quantum efficiency of NADH on its free/bound state. Time-resolved fluorescence anisotropy discriminates free/bound NADH and shows a preferential increase in free NADH during the normoxic (blue curve) to hypoxic (red curve) metabolic transition."


By discovering a crucial piece of submicroscopic information about how the brain converts fuel into energy for neurons, Cornell University biophysicists have gleaned new insights into brain cell metabolism that will allow neurologists to better interpret data from such diagnostic tests as positron emission tomography (PET) scans and a specialized magnetic resonance imaging (MRI) test.

The discovery uncovers a key piece of information that’s been missing for years about cell metabolism -- how the compound beta-nicotinamide adenine dinucleotide (NADH) interacts in the mitochondria. The researchers discovered that some molecules of NADH are bound to other molecules in the mitochondria, while some are free in two different conformations. Whether NADH is bound or free affects how much it fluoresces in diagnostic tests -- and not knowing this has led scientists in the past to misjudge the amount of activity in neural cells.

The findings, published as a paper of the week in the July 1 issue of the Journal of Biological Chemistry (Vol. 280), are based on research in the biophysics lab directed by Watt W. Webb, the S.B. Eckert Professor in Engineering at Cornell. The journal’s cover illustration was designed by Webb with images from his biophysics lab by Karl Kasischke, Harshad Vishwasrao and Dan Dombeck.



Vishwasrao, the lead author of the paper and a former graduate student of Webb’s, was able to differentiate between bound and the two forms of free states of NADH molecules based on the rate that molecules rotate, or don’t rotate, over nanoseconds of time. He used a technique developed by Ahmed Heikal (now of Pennsylvania State University) in Webb’s lab.

NADH concentration has been used as an indicator for cell metabolism for some 50 years, but harmful levels of ultraviolet radiation were required to induce the fluorescence needed for the measurements. Webb and his colleagues, however, devised a technique several years ago that uses short, intense laser pulses of harmless infrared instead of ultraviolet radiation. The technique, called multi-photon laser scanning microscopy (MPLSM), allowed the Vishwasrao team to measure NADH levels in cells with controlled levels of oxygen saturation without damaging the cells. And unlike other methods, such as PET and blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI), MPLSM can simultaneously show how the orientation of NADH molecules changes (by measuring their anisotropy) within fractions of a nanosecond.

The results, said Vishwasrao, now a postdoctoral fellow at Columbia University, indicate that the unbound NADH molecules rotate much more quickly -- and therefore lose their fluorescence more quickly -- than bound NADH molecules.

"One bound NADH molecule is about as bright as 10 free ones," said Vishwasrao. "When we first got evidence that there was free NADH, we thought we made a big mistake. We thought we were crazy. We went back, and the more we talked about it, and the more experiments we did, it became clear. Other groups were seeing the same thing."

When the team used the data to calculate the proportion of bound-to-free NADH molecules in a section of tissue, they found that their calculations resolved inconsistencies that had troubled researchers for years. "The effect is large enough to account for the frequently seen problems," said Webb.

NADH is a good indicator of cell activity for several reasons. First, the molecule is ubiquitous in the mitochondria, where oxidative metabolism takes place. It also naturally fluoresces, which means it can be detected without adding artificial tracers or dyes. And because NADH is converted in the metabolic process to non-fluorescent NAD+, researchers can gauge how much oxidation is occurring in a cell based on its fluorescence.

With this new information, Vishwasrao said, scientists and physicians who study the effects of stroke, Alzheimer’s disease and other brain injuries and pathologies will be better equipped to interpret quantitative data from diagnostic techniques they’ve been using -- without fully understanding -- for years.

"The role of multi-photon imaging and spectroscopy of NADH is not to replace other imaging techniques," he said, "but rather to provide a more detailed microscopic framework of brain metabolic dynamics within which macroscopic techniques, such as BOLD-fMRI , PET and optical scanning, can interpret their respective detected signals."

Webb’s lab, the Developmental Resource for Biophysical Imaging Opto-electronics (DRBIO), has yielded other significant advances recently. Last year, Kasischke, formerly of Cornell and now a resident in neurology in Germany, used MPLSM to tease apart the metabolic functions of neurons (nerve cells) and astrocytes (star-shaped cells that provide neurons with fuel). Kasischke’s paper filled an important piece of the metabolic puzzle by showing that brain cells have distinct roles in the metabolic process. His team (which included Vishwasrao and Webb) found that neurons use oxygen to convert carbohydrate to energy (a process called oxidation) and that astrocytes kick in subsequently to produce lactate fuel (a process called glycolysis). This confirmed a controversial function based on the hypothesis known as the astrocyte-neuron lactate shuttle, and the finding helped researchers to better understand how the metabolic process works on a microscopic level.

Vishwasrao’s current paper is co-authored by Kasischke, Webb and Heikal.

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>