Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Household dust is main source of flame retardants in humans

07.07.2005


Household dust is the main route of exposure to flame retardants for people — from toddlers to adults — followed by eating animal and dairy products, according to a report in the July 15 issue of the American Chemical Society’s journal Environmental Science & Technology. ACS is the world’s largest scientific society. Until this study, which is based on a computer model developed by Canadian researchers, scientists have been unsure exactly how people are being exposed.



PBDEs (polybrominated diphenyl ethers) — used widely as flame-retardant additives in electronics and furniture — have been detected in humans across the globe, with especially high levels in North America. Little is known about the specific toxic effects of brominated flame retardants, but some researchers say that the increasing presence of the compounds in human tissue is cause for concern because they have been associated with cancer and other health problems in animal studies.

“Our work is good news and bad news,” says the study’s lead author, Miriam Diamond, Ph.D., an environmental chemist at the University of Toronto. “Good news because we’ve identified the main route of exposure to PBDEs — house dust; bad news because we need more action to remove PBDEs from household products and replace them with alternatives that are effective in reducing hazards related to fires and that do not accumulate in the environment.”


PBDEs are released into the environment at their manufacturing sources and also through everyday product wear and tear, which is the presumed source of the chemicals in house dust, according to Diamond. Asked if drinking water could be a possible source, Diamond said: “No, it’s not a significant route of exposure.”

A small study published earlier this year in ES&T found PBDEs in the dust of 16 homes tested in the Washington, D.C., area and one home in Charleston, S.C. The work of Diamond and her co-authors builds on that research with a more complete analysis of all potential exposure pathways, including food, soil, dust and inhalation of indoor and outdoor air. Using a combination of measured concentrations and computer modeling, she and her coworkers estimated the emissions and fate of PBDEs in the Toronto area.

Toddlers tend to have high levels of PBDEs, which is most likely because they are frequently bringing toys and other objects from the floor to their mouths, the researchers suggest. Breast-feeding infants have higher levels of PBDEs than all other ages, which is consistent with earlier research revealing high levels of PBDEs in the breast milk of women across North America.

“We hypothesize that women with very high PBDE concentrations in breast milk may be super-exposed,” Diamond says. “Given evidence from the literature, it seems likely that if one reduces one’s exposure, then presumably the breast milk concentrations will fall.”

Diamond suggests a number of steps that people can take to minimize exposure, such as frequent house cleaning and improved ventilation. “It seems to me that any measures one takes to minimize dust will reduce exposures,” she says.

Officials in the United States and Canada are still debating the fate of flame retardants, although the main U.S. manufacturer has discontinued production of two types of PBDEs — the penta and octa formulations — as part of a voluntary agreement with the U.S. Environmental Protection Agency. The European Union has banned the penta and octa formulations and is currently considering a voluntary phase-out and further study on a third type, the deca formulation.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>