Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT develops Anklebot for stroke patients

06.07.2005


Clinical trials have already shown that an MIT robotic arm can help stroke patients regain movement faster. Now MIT pioneers in the field of robotic therapy are hoping a robotic gym full of machines targeted at different parts of the body will significantly improve stroke patients’ movement in arms, wrists, hands, legs and ankles.



To that end the researchers have created a new Anklebot, and on July 1, MIT and the Baltimore Veterans Administration Medical Center established a Center of Excellence on Task-Oriented Exercise and Robotics in Neurological Diseases to further such work on lower extremity movement.

"This heralds a transition of therapeutic robotics from research to practice, similar to when computers went from being specialized number-crunchers for engineering and science to the ubiquitous consumer appliances for word-processing and presentation that we use today," said MIT Professor Neville Hogan, a principal investigator in the work who holds appointments in mechanical engineering and brain and cognitive sciences.


The researchers also discussed several aspects of their work at the International Conference on Rehabilitation Robotics (ICORR) held June 28 through July 1 in Chicago.

Hermano Igo Krebs, co-principal investigator and a principal research scientist in mechanical engineering, said, "It appears that we are at the cusp of a revolution in the way rehabilitation medicine is practiced, and therapeutic robotics is at center stage.

"The focus of the new center is to accelerate the pace of this revolution using a multisystems approach for the recovery of stroke patients’ gait, investigating models of neurological plasticity [the brain’s ability to adapt], cardiovascular fitness, therapeutic robotics and behavioral modifications." Krebs is also affiliated with the Weill Medical College of Cornell University and the Burke Medical Research Institute.

Every year some 700,000 U.S. citizens suffer strokes. And, according to Dr. Richard Macko of the Baltimore VA, who will be the principal investigator for the new center, that number will double over the next 20 to 30 years as the baby boomers age. The majority of patients require therapy for problems with language, memory or movement.

About 16 years ago, a team led by Hogan and Krebs focused on the latter. They developed a robot aimed at the recovery of arm movement, naming it MIT-Manus for the link between its general therapeutic focus and MIT’s motto, "mens et manus" (mind and hand).

Over the last seven years, the two and colleagues have reported positive results from six clinical trials involving almost 300 stroke patients. Each trial addressed different questions, such as the short- and long-term benefits of the therapy.

In the MIT-Manus therapy, a person sitting at a table puts a lower arm and wrist into a brace attached to the arm of the robot. A video screen prompts the person to perform an arm exercise such as connecting the dots or drawing the hands of a clock. If movement does not occur, MIT-Manus moves the person’s arm. If the person starts to move on his own, the robot provides adjustable levels of guidance and assistance to facilitate the person’s arm movement.

In the first clinical trial, the researchers found that stroke patients who used the machine four to five hours a week improved further and faster, as measured by increased function of the impaired limb, than a second group of patients that did not receive robot-assisted therapy. "In fact, patients in the robot-assisted group improved twice as much as the control group," Krebs said. At the same time, the trial showed that the robot is well tolerated by patients and causes no pain.

The new center at the Baltimore VA aims to "implement for the lower extremities what we did for the upper extremities," Krebs said.

The MIT-Manus work also answered a longstanding question among therapists: manual manipulation of a stroke victim’s disabled limb does indeed aid recovery of the use of that limb. "There had been a great deal of intuitive belief that this works, but our research provided conclusive objective evidence," said Hogan, who is director of MIT’s Newman Laboratory for Biomechanics and Human Rehabilitation.

The researchers have also been creating other machines focusing on different parts of the body. These include one for the spatial movements of the shoulder and elbow, one for the wrist and one for the hand. "We’ve seen hints that generalization [from one machine] is limited, and to deliver optimal therapy clinicians need a gym of robots," said Krebs.

Most recently the team created a prototype for therapy of the ankles, dubbed the Anklebot. The idea is analogous to MIT-Manus: Get the robot, which fits around the leg in a brace, to help improve movement of a paralyzed ankle. Among other things, better balance and more efficient movement of the joint would help improve gait and prevent the falls that are common to stroke victims who have limited mobility.

Other MIT collaborators presenting at ICORR are MIT affiliate Dr. Susan Fasoli and Steven Charles, a Ph.D. candidate in the MIT-Harvard Division of Health Sciences and Technology.

Other key collaborators are Dr. Bruce Volpe of the Burke Medical Research Institute and Cornell University, Dr. Rich Macko, Dr. Chris Bever and Dr. Larry Forrester of Baltimore VAMC and University of Maryland, Dr. Bob Ruff and Dr. Janis Daly from Cleveland VA, Dr. Joel Stein and Dr. Walter Frontera from the Spaulding Rehabilitation Hospital and Harvard Medical School, and Dr. Stephen Mernoff from the Rhode Island Rehabilitation Hospital.

The work is funded by the National Institutes of Health, the Veterans Administration and a N.Y. State Score Award.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>