Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists uncover clues to ’disappearing’ precancers


New research sheds light on why cervical precancers disappear in some women and not in others. Scientists at the Johns Hopkins Kimmel Cancer Center report in the July 1 issue of Clinical Cancer Research that the reason many of these lesions persist is an unlikely mix of human papilloma virus (HPV) strain and a woman’s individual immune system.

For decades, scientists have known that HPV causes nearly all cases of cancer in the neck of the womb. Most sexually active women – some reports say up to 80 percent – are exposed to HPV and more than half of these women are infected with strains of the virus that could likely turn a precancerous lesion to cancer. But only a small percentage of precancers progress to full-blown cancer, a process that takes years.

To find out why, gynecologic oncologist Cornelia Trimble, M.D., closely monitored 100 women with high-grade, precancerous cervical lesions before standard surgery to remove the abnormal tissue. Some of the lesions – about 28 percent -- regressed by themselves before surgery within a time period considered within the bounds of care standards. But among patients whose pre-cancers lingered, Trimble discovered that women were three times less likely to resolve their lesions if they carried a certain immune system gene and did not have HPV16, the most common strain of the virus.

Trimble was particularly interested in these molecular differences because she is using HPV-targeted vaccines in related studies to treat early cervical lesions before they turn into cancer. "It’s important for us to know the immunologic fingerprint of women who may best benefit from our vaccine," she says. "Some lesions are on the brink of resolving, but may need the vaccine to push them over."

Lesions containing HPV16 alone are the most troublesome and difficult to resolve. In the subset of 44 patients with HPV16 only, their type of immune system made no impact on whether or not their lesion resolved. But in 30 women with non-HPV16 lesions, those who carry a gene called HLA*A201 were three times less likely to clear up their lesions than those without the gene (14.3 percent vs. 42.3 percent). According to Trimble, 40 percent of people carry the HLA*A201 gene, which codes for certain white blood cell proteins.

None of the lesions got worse during the study period, and all unresolved lesions were surgically removed when the observation period ended. "Since none of the lesions progressed after 15 weeks, we can be reasonably assured that this window of time is safe for vaccine treatments," she said.

Trimble is studying a larger group of patients to confirm her results and rule out other potentially confounding factors such as age, smoking status, and contraceptive method, which may influence how these lesions clear. Trimble recently published results linking second-hand cigarette smoke to cervical cancer progression. She also is looking for additional immune system characteristics that could predict mechanisms of immune responses to HPV. This may provide more information on which women have lesions more likely to regress and potentially avoid surgery, plus provide the opportunity to treat early-stage disease.

According to the Centers for Disease Control, an estimated 20 million people in the United States are infected with HPV and up to three-quarters of these have viral strains that are linked to cervical, oral and anal cancers. More than 10,000 cases of cervical cancer are diagnosed in the United States annually.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>