Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturated fats combined with genetic trait implicated in development of type 2 diabetes

29.06.2005


Research being published in July issue of Diabetes zeros in on who is potentially more susceptible to developing the disease



A University of Alberta team of researchers has discovered an additional 2 million Canadians who have a high fat diet or are overweight may be at increased risk for developing type 2 diabetes if they carry a particular type of common specific genetic trait known as a polymorphism.

In work published today in the journal, Diabetes, pharmacology professor Peter Light and graduate student Michael Riedel suggest that saturated and trans fats are much more effective activators of a specific potassium channel found in the pancreas--known when activated to reduce insulin secretion from the pancreas and increase blood sugar levels. This effect, they say, is amplified in the polymorphic potassium channel. Interestingly, it seems that polyunsaturated fats are poor activators of the potassium channel.


"We’re suggesting that people with this specific potassium channel polymorphism--about 2 million Canadians--may be more susceptible to type 2 diabetes if they have a high fat diet or are overweight, two of the biggest risk factors for type 2 diabetes," Dr. Light explains. "This may explain why 20 percent of type 2 diabetic Caucasians carry two copies of this polymorphism in their genes compared to only 10 percent in the non-diabetic Caucasian population."

The researchers say this discovery opens up the distinct possibility of specific genetic screening of people at risk for type 2 diabetes, which would then give physicians additional information to advise their high-risk patients on preventative diet and exercise options.

About 10 percent of non-diabetic Caucasians who possess this polymorphism may be at increased risk of developing type 2 diabetes if they consume a diet rich in saturated and trans fats. These findings provide a plausible "missing link" between common genetic variations and environmental risk factors for this very prevalent disease, Dr. Light explains.

The most recent findings build on their previous work. Back in 2003, the group published a brief genetics report in Diabetes showing that this common polymorphism in a potassium channel that controls insulin secretion is much more susceptible to being activated by intracellular fats.

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>