Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pomegranate juice for moms may help babies resist brain injury

29.06.2005


Expectant mothers at risk of premature birth may want to consider drinking pomegranate juice to help their babies resist brain injuries from low oxygen and reduced blood flow, a new mouse study from Washington University School of Medicine in St. Louis suggests.



In humans, decreased blood flow and oxygen to the infant brain is linked to premature birth and other irregularities during pregnancy, birth and early development. The phenomenon, which is called hypoxia ischemia, causes brain injury in approximately 2 of every 1,000 full-term human births and in a very high percentage of babies born before 34 weeks of gestation. Hypoxic ischemic brain injury can lead to seizures, a degenerative condition known as hypoxic ischemic encephalopathy, and mobility impairments including cerebral palsy.

When scientists temporarily lowered brain oxygen levels and brain blood flow in newborn mice whose mothers drank water mixed with pomegranate concentrate, their brain tissue loss was reduced by 60 percent in comparison to mice whose mothers drank sugar water or other fluids.


"Hypoxic ischemic brain injury in newborns is very difficult to treat, and right now there’s very little we can do to stop or reverse its consequences," explains senior author David Holtzman, M.D., the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. "Most of our efforts focus on stopping it when it happens, but if we could treat everyone who’s at risk preventively, we may be able to reduce the impacts of these kinds of injuries."

The study, which appears in the June issue of Pediatric Research, was conducted in collaboration with POM Wonderful, a U.S. producer of pomegranates and pomegranate juice, and scientists at the University of California, Los Angeles. Lead author David Loren, M.D., formerly a neonatal critical care fellow in the Department of Pediatrics, performed the research. He is now at the University of Washington in Seattle.

Holtzman’s lab has been studying neonatal brain injury for more than a decade by temporarily reducing oxygen levels and blood flow in the brains of 7-day-old mouse and rat pups. The model produces brain injuries similar to those seen in human infants injured by hypoxia ischemia.

Pomegranates contain very high concentrations of polyphenols, substances also found in grapes, red wine, and berries that scientists have linked to potential neuroprotective and anti-aging effects.

Scientists gave pregnant female mice water with pomegranate juice, plain water, sugar water or vitamin C water to drink during the last third of pregnancy and while they suckled their pups for seven days after birth.

After performing the procedures that exposed mouse pups to low oxygen levels, scientists examined the brains, comparing damage to the cortex, hippocampus and the striatum. Researchers who conducted the examinations were unaware of what the pup’s mother drank. Mice whose mothers drank pomegranate juice had brain injuries less than half the size of those found in other mice.

Much of the damage from hypoxia ischemia results when oxygen-starved brain cells self-destruct via a process known as apoptosis. Scientists found an enzyme linked to apoptosis, caspase-3, was 84 percent less active in mice whose mothers drank pomegranate juice.

Holtzman says the results suggest the need for studies of pomegranate juice’s effects in humans, but he cautions that because of the relative unpredictability of hypoxia ischemia in newborns, it would be difficult to assemble a sufficiently large study group.

Hypoxic ischemic brain damage is frequently associated with premature delivery. The lungs, brain and circulatory systems in some premature babies are insufficiently mature to supply the brain with enough nutrients and oxygen outside the womb. Scientists know some of the factors that increase risk of premature birth, including diabetes, low economic status, youthful mothers, weakness in the cervix and a personal or familial history of miscarriage.

"One might advise this group that studies in animals have suggested drinking pomegranate juice may reduce the risk of injury from hypoxia ischemia," he says.

Holtzman’s findings and other research into the potentially beneficial effects of pomegranate juice, red wine, and other natural foods form a neurological parallel to chemoprevention, an area of oncology research focused on finding naturally-occurring substances in foods that reduce the chances of developing cancer.

"For pregnant women previously interested in the neuroprotective effects of red wine, these results suggest that pomegranate juice may provide an alternative during pregnancy, when alcohol consumption is unacceptable because it increases risk of birth defects," Holtzman says.

Holtzman’s group is attempting to isolate the neuroprotective ingredients in pomegranate juice as a possible prelude to concentrating those ingredients and testing their ability to reduce brain injury. They also plan to investigate the possibility that polyphenols from pomegranates and other natural foods can slow other neurological disorders including Alzheimer’s disease.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>