Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The diagnosis of tumours in children

28.06.2005


Determining if there exist genetic alterations that can be associated with the diagnosis and prognosis of neuroblastic tumours, responsible for 15% of child deaths due to cancer, was the aim of the Paula Lázcoz Ripoll’s PhD thesis which she recently defended at the Public University of Navarra. The work was entitled: Molecular diagnosis of neuroblastic tumours: genetic profile and analysis of tumour suppressor genes.



Genetic alterations

Neuroblastic tumours are malignant extracraneal tumours most frequent in infancy: they affect 1 in every 8,000 children. Amongst these tumours are ganglioneuromas, ganglioneuroblastomas and neuroblastomas, the latter being the most malignant. According to the authoress of the thesis, in some cases, treatment is not required and they revert to their original state. But there are other neuroblastomas that are more aggressive and require an excision of the tumour and the subsequent treatment with radiotherapy and chemotherapy, although with scant percentage of success.


In this context, Ms Paula Lazcoz put forward as the objective of her PhD an attempt, from a molecular pathology perspective, at the diagnosis and prognosis of neuroblastic tumours. To this end, 45 neuroblastic tumours were analysed and 12 cellular lines of neuroblastoma, i.e. cells extracted from this type of tumour and maintained in culture.

Also, eight tumour suppressor genes that appear altered in numerous types of cancer were studied. In concrete, the genes involved are PTEN, DMBT1, MGMT, FGFR2, MXI1, RASSF1A, NORE1A, BLU and CASP8. According to Paula Lazcoz, in normal conditions, the tumour suppressor genes avoid a normal cell transforming into a tumorous cell and thus giving rise to a tumour, and so the alteration of any of these genes could be involved in the genesis of a tumour.

In this way, the corresponding DNA was obtained from the tumours and the indicated cellular lines, in order to subsequently determine the frequency of homozygotic delections, loss of heterozygosity, instability of microsatellites, hypermethylation of the promoter and the level of genetic expression of the previously mentioned genes, all of these being mechanisms that can inactivate the tumour suppressor genes and, thus, favour the formation of the tumour. The techniques used in order to carry out this analysis were differential PCR, standard PCR, MSP and RT-PCR. The profile of gains and losses of genetic material at a global genome level was also studied by means of CGH.

Once the genetic alterations are determined, it was observed that no statistically significant relationship existed between the genetic alterations found and the clinical-pathological data of the tumours (age, sex, tumour location, etc). According to the authoress, these results could be due to the fact that the sample, given its size, was not very representative thus begging the question that, with a wider sample, more significant data would be obtained.

Nevertheless, a statistically significant relationship was in fact observed (p<0.05) between the hypermethylation of the RASSF1A and CASP8 genes, which might suggest the need to alter simultaneously two routes of carcinogenetic control in order to obtain a neuroblastic tumour.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>