Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-million dollar research project is designed to mislead malaria mosquitoes with odour

28.06.2005


An international team of scientists will in the coming five years set up a research project on developing diversions to mislead malaria mosquitoes with odours. With these the number of cases of malaria in tropical Africa may be reduced strongly. Scientists at Wageningen University will be working with colleagues in the USA, Tanzania and Gambia on a project led by Vanderbilt researchers that has received $8.5 million dollars (approximately 7 million Euro) from the U.S. Foundation for the National Institutes of Health and the Bill and Melinda Gates Foundation as part of their Grand Challenges in Global Health Initiative.

In the team are scientists from Vanderbilt University, Yale University and Wageningen University who will be co-operating with researchers from the Ifakara Health Research and Development Centre in Tanzania and the Medical Research Council Laboratories in Gambia (Africa). They aim at reducing the population of malaria transferring mosquitoes by setting up odour traps and effective repellents that keep malaria mosquitoes away from potential human hosts. In this fashion, they hope that the risk of malaria transfer may be reduced substantially.

To find a proper host (the human being) female malaria mosquitoes head for the odours they intercept with their antennas. After they recognise the host’s odour, they suck up blood that hey need for egg production. As the mosquito is drawing blood, parasites from the mosquito enter the human body. A small percentage of malaria mosquitoes are infected by the Plasmodium parasite. These parasites (Plasmodium spp.) are responsible for the malaria disease. When an infected person, after an incubation period of ten to fourteen days, is bitten again by a mosquito, the malaria parasite is transmitted to the mosquito and so is spread more widely throughout the mosquito population. The change for other people of being infected will increase. The number of malaria cases is world-wide between 300 and 660 million per year and is the most important life-threatening disease in the world, causing more than a million fatal victims pro year.



Odour Insect Trap

The malaria mosquito Anophels gambiae heads for a complex of odours to find a host. The research team of Vanderbuilt University (Nashville, Tennessee) and Yale University (New Haven, Connecticut) in the USA will develop odour material for which the mosquito antennas are very sensitive. This team will identify and test either attractive or repellent odour materials or materials causing confusion. After that the Wageningen University team will look at the effect of the interesting odour materials from the American research on mosquito behaviour. The materials (substances) giving the strongest reaction (attracting, repelling or causing confusion) will then be tested in a simulated natural situation in Ifakara, Tanzania. The ideal blend of odours will find its way to African villages for full-scale, practical tests as part of the project. The villages are located in the Gambia and Tanzania and are situated in different geographical extremes with different mosquito populations. The results of the research project should therefore be applicable for much of tropical Africa. If the experiments are successful African households will have an added degree of protection provided by strong new repellents or odorants that confuse the mosquito’s sense of smell, causing less mosquito biting, while outside the villages insect traps are baited with attractive odorants that the insects can’t ignore. The ultimate goal is to reduce malaria transmission by the use of odorant devices.

The eventual products can be deployed against other pathogenic mosquitoes, such as the mosquito Aedes aegypti spreading dengue fever and against Culex pipiens, carrier of the West-Nile virus.

Earlier this month news spread about a new biological approach for fighting malaria mosquitoes developed by the entomology team of Wageningen University. Its research identified a fungus that seriously weakens or kills the mosquitoes before they can infect people with malaria parasites. This illustrates the fact that the Wageningen team is working on several methods of fighting the malaria mosquito that could be combined to form an integrated strategy for fighting this deadly disease.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>