Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aging eye more susceptible to serious damage

27.06.2005


Increasing stiffness of the aging eye may make older adults more susceptible to eye damage following trauma, according to research at Wake Forest-Virginia Tech School of Biomedical Engineering and Sciences.



"The gradual change in lens stiffness during a person’s lifetime leads to a lens that is four times stiffer than at birth, and this has implications for the likelihood of eye injury," said Joel D. Stitzel, Ph.D., of the Virginia Tech-Wake Forest Center for Injury Biomechanics, and three colleagues, writing in the June issue of Archives of Ophthalmology.

Using a computer model of the eye, Stitzel and colleagues investigated possible injury mechanisms in the eyes of elderly individuals and the effects of lens stiffness on injury prediction by the model. The new data document that the risk of certain types of eye injury increases with age.


"General testing of the mechanical characteristics of the entire lens suggests that aging of the human lens is associated with a progressive loss of mechanical strength," Stitzel said. "As stiffness of the lens increases over time, the amount of deformation that the lens can withstand without damage or dislocation decreases. This can result in an increased risk of eye injury with age, not only to the lens itself but also to other internal components of the eye, resulting in increased risk of tearing of internal structures of the eye and bleeding." He added, "The effect is like brittle bones in some elderly people and those with osteoporosis: just as these people are more prone to breaking bones, increased lens stiffness can result in greater risk of injury to the eye."

This evidence led to several recommendations.

"The data indicate that all people, especially elderly individuals, should use safety systems, such as seat belts, while driving a car and sit as far back from the air bag as is comfortable," said Stitzel, assistant professor of biomedical engineering at Wake Forest University School of Medicine, a part of Wake Forest University Baptist Medical Center. And the researchers called for design modifications to reduce the risk that a deploying air bag in an automobile will contact the eye.

People who wear glasses "should be sure that they are fitted with impact-resistant polycarbonate lenses," he said. "Those in sports or work environments requiring protective lenses should wear them."

Stitzel and his colleagues have been working on the computer simulation model for several years and already have reported that the model tracks the actual results of a series of experiments in which foam particles, BBs and baseballs strike the human eye. The model predicts when the globe of the eye will rupture from high-speed blunt trauma.

In an accompanying editorial, Paul F. Vinger, M.D., of Concord, Mass., said the Virginia Tech-Wake Forest center’s project to create the computer simulation "is a formidable undertaking that is bound to change the course of eye trauma research."

He said that when the model predictions were compared with actual results, there was "excellent correlation between the calculated and experimental results."

The new research "extends this model to study the effects of increasing lens stiffness due to aging on the probability of suffering eye injuries in a car accident, such as being hit in the eye with the steering wheel, an airbag or a foam particle," Vinger said in the editorial.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>