Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgetown cancer researchers develop high throughput method

27.06.2005


Cutting edge matrix assembly can be used to analyze large numbers of tumors



Scientists at Georgetown University’s Lombardi Comprehensive Cancer Center have devised a new low-cost technology that allows thousands of tumor slices to be screened side-by-side, an improvement over current and more expensive methods that can analyze only several hundred tumors at once. The researchers anticipate that this technology could someday lead to more reliable prediction of patient prognosis and improved selection of optimal treatments for cancer and other diseases.

The new technology, details of which are published in the July 2005 issue of Nature Methods, "may lead to a better understanding of human cancer, as well as other human disorders, because it will let scientists discover and then detect unique biomarkers of disease in patients," says Hallgeir Rui, M.D., Ph.D., associate professor of oncology at Georgetown and principal investigator of the study.


Rui and the study’s first author, postdoctoral researcher Matthew LeBaron, Ph.D., created the technology, which they call cutting edge matrix assembly (CEMA), to construct what are known in the field as tissue microarrays. This new method can be done by using the tools that are already available in a medical center’s pathology laboratory, they say.

Researchers now analyze tumors or tissues in large numbers by embedding cylindrical core samples of tissue, each taken from an individual patient, into a cube-like paraffin block, which is then sliced thin and stained in order to show proteins or molecules that scientists think may be involved in a disease. The cores, however, must be spaced a certain distance apart within the paraffin structure or else the cube will crack, Rui says. "This is both laborious and tricky."

The CEMA technology uses a simple strategy of stacking "plates" of individual tissue, and bonding them with glue. The multiple stacks are then transversely cut and bonded edge-to-edge to assemble the high density arrays or matrices. These arrays, which are then also thinly sliced for analysis, can hold more than 10,000 tissue samples, the researchers say.

"Just like cars used to be built on a heavy frame but are now assembled with a self-supporting construction, CEMA arrays do not require a space-wasting scaffold or frame but samples are instead bonded directly to each other," Rui says.

"The statistical power inherent in the larger sample numbers of CEMA arrays are expected to strengthen the discovery of new diagnostic markers," LeBaron says. "Such markers will allow more accurate patient diagnosis and predict outcome more effectively, and ultimately tailor treatments to an individual’s disease."

"In addition to tumor analyses, CEMA arrays will be useful for large scale studies of whether drugs or environmental contaminants have toxic effects on healthy tissues," says Heidi Crismon, a medical student who assembled the so far largest array of nearly 12,000 individual pieces of liver and kidney tissues for this study.

With CEMA, the investigators have also solved the problem of creating arrays of thin-walled or multilayered tissues such as intestine, skin, and blood vessels which can not be arrayed by existing technologies.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>