Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgetown cancer researchers develop high throughput method

27.06.2005


Cutting edge matrix assembly can be used to analyze large numbers of tumors



Scientists at Georgetown University’s Lombardi Comprehensive Cancer Center have devised a new low-cost technology that allows thousands of tumor slices to be screened side-by-side, an improvement over current and more expensive methods that can analyze only several hundred tumors at once. The researchers anticipate that this technology could someday lead to more reliable prediction of patient prognosis and improved selection of optimal treatments for cancer and other diseases.

The new technology, details of which are published in the July 2005 issue of Nature Methods, "may lead to a better understanding of human cancer, as well as other human disorders, because it will let scientists discover and then detect unique biomarkers of disease in patients," says Hallgeir Rui, M.D., Ph.D., associate professor of oncology at Georgetown and principal investigator of the study.


Rui and the study’s first author, postdoctoral researcher Matthew LeBaron, Ph.D., created the technology, which they call cutting edge matrix assembly (CEMA), to construct what are known in the field as tissue microarrays. This new method can be done by using the tools that are already available in a medical center’s pathology laboratory, they say.

Researchers now analyze tumors or tissues in large numbers by embedding cylindrical core samples of tissue, each taken from an individual patient, into a cube-like paraffin block, which is then sliced thin and stained in order to show proteins or molecules that scientists think may be involved in a disease. The cores, however, must be spaced a certain distance apart within the paraffin structure or else the cube will crack, Rui says. "This is both laborious and tricky."

The CEMA technology uses a simple strategy of stacking "plates" of individual tissue, and bonding them with glue. The multiple stacks are then transversely cut and bonded edge-to-edge to assemble the high density arrays or matrices. These arrays, which are then also thinly sliced for analysis, can hold more than 10,000 tissue samples, the researchers say.

"Just like cars used to be built on a heavy frame but are now assembled with a self-supporting construction, CEMA arrays do not require a space-wasting scaffold or frame but samples are instead bonded directly to each other," Rui says.

"The statistical power inherent in the larger sample numbers of CEMA arrays are expected to strengthen the discovery of new diagnostic markers," LeBaron says. "Such markers will allow more accurate patient diagnosis and predict outcome more effectively, and ultimately tailor treatments to an individual’s disease."

"In addition to tumor analyses, CEMA arrays will be useful for large scale studies of whether drugs or environmental contaminants have toxic effects on healthy tissues," says Heidi Crismon, a medical student who assembled the so far largest array of nearly 12,000 individual pieces of liver and kidney tissues for this study.

With CEMA, the investigators have also solved the problem of creating arrays of thin-walled or multilayered tissues such as intestine, skin, and blood vessels which can not be arrayed by existing technologies.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>