Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holograms detect digital fraud

22.06.2005


A new technique for detecting forged photographs will help newspapers and magazines check celebrity pictures that might have been doctored to make them more newsworthy, and prevent hackers from tampering with sensitive legal images including fingerprint records and medical scans used as evidence in court.



Defence agencies could also use the technique to verify the source of secret military reports, and to protect satellite images, such as aerial photographs of the Iraqi desert, from manipulation.

Developed by physicists Professor Giuseppe Schirripa Spagnolo, Carla Simonetti and Lorenzo Cozzella from the University of Roma Tre in Rome, Italy, this research was published today (21st June 2005) in the latest issue of the Institute of Physics journal, Journal of Optics A.


In their system, an image, e.g. a company logo, is added to a digital photograph as an invisible "watermark". Any subsequent attempt to alter the content of the photograph also results in damage to the watermark. Forgery can then be detected by using a computer to extract the watermark and check it for damage. In a forged picture, it can even identify the object or section which has been tampered with.

The team had to ensure that only an authorised recipient can extract the watermark, which could otherwise be added to a fraudulent image to pass it off as genuine. To counter this problem the watermark is encrypted before adding it to the image, so that only someone who knows the private key can reconstruct it. Furthermore, the encryption makes it difficult to detect whether an image has been watermarked or not.

Before it is added to the photograph the encrypted mark is turned into a computer generated hologram (CGH). This is a simulation of the pattern of light waves that is recorded when a real hologram is made. As with all holograms, a small part of the CGH contains enough information to recreate the entire image. This means that only a small part of the watermarked image is needed to extract the watermark.

When the CGH is added to the image it replaces the image "noise", which has been filtered out beforehand. Noise is random, high-frequency information that doesn¡¦t contribute to the image that you see, and can be removed without damaging the picture. The CGH watermark information is in the same high-frequency band as the noise, so it is invisible to the human eye when added to the photograph.

The watermark is now embedded in the digital image file, in a separate part of the spectrum to the picture information, making it easy for the recipient to isolate and extract it. If the watermark can’t be reconstructed using the private key it means that someone has destroyed the watermark by trying to modify the image.

Testing their technique, the team demonstrated how a hologram watermark can be used to find out which part of an image has been tampered with. They changed colours in certain areas of a watermarked image and divided it into 16 parts, extracting a watermark from each. The parts where the colour change had taken place showed a significantly damaged watermark indicating that they had been modified.

"We hope that this technique can be used to improve the reliability of photographs in the media" said Dr Lorenzo Cozella, co-author of the paper, "Digital cameras could be developed so that an invisible watermark is added when a picture is taken. A newspaper buying a photo from a freelancer could then check for a watermark to confirm that it hasn¡¦t been tampered with to make it more newsworthy."

The system could also protect databases of images that serve as evidence in court, for example fingerprint records or medical scans, which could be used in cases of alleged malpractice. All images in the database would be watermarked so they could be checked without having to refer to the original hard-copy. This would be especially useful for electronically stored information exposed to external users via the internet, increasing its vulnerability to fraud.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>