Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Positive effects of nuclear medicine, ’smart drugs’ provide hope for non-hodgkin’s lymphoma patients

22.06.2005


Researchers from the United States, France and Germany make advances, provide alternatives to traditional chemotherapy treatment



Three scientific studies--each highlighting new discoveries in treatment for patients with non-Hodgkin’s lymphoma--were announced at the Society of Nuclear Medicine’s 52nd Annual Meeting June 18–22 in Toronto.

"Nuclear medicine has a growing role in treating non-Hodgkin’s lymphoma," said SNM member Richard L. Wahl, M.D., director of nuclear medicine/PET at the Russell H. Morgan Department of Radiology and Radiological Science. "When nuclear medicine is used earlier in the course of the illness, there is a higher efficacy of treatment," he added. In "An Update of Complete Response Durability Following Tositumomab and Iodine I-131 Tositumomab (the Bexxar® Therapeutic Regimen) in a Pivotal Study of Patients (PTS) Refractory to Their Last Chemotherapy," the findings suggest "that we may have changed the course of the disease," said Wahl.


According to the results of that 2001 "pivotal" study, 60 patients, who had been previously treated with and had failed to respond or responded poorly to multiple types of chemotherapy--and whose tumors had recurred--received a single course of treatment with a radioactive antibody or "smart drug" injected into the bloodstream that targets and kills cancer cells, he explained. Of those patients, 65 percent responded to treatment; 20 percent had complete response or no evidence of remaining cancer. In the initial report, those complete responders were over 47 months. Four years later, the update study revealed that those patients who achieved a complete response had "an enduring response," noted Wahl, indicating that "while we can’t say the patients are ’cured,’ they have lived without the disease recurring for a substantial period of their lives."

With the therapeutic regimen, a patient receives an injected test dose of the antitumor monoclonal antibody-- tositumomab and iodine I-131 tositumomab--to determine how his or her body processes that tagged antibody. Nuclear medicine imaging scans assess how quickly the drug reaches the tumor and how quickly radiation disappears from a patient’s body. The dose given to each patient is individualized to the patient’s own handling of the drug, so the patient receives a "personalized dose" of the treatment. Therapy is considered complete after the patient receives that individualized therapeutic dose, typically one week or so after the dosimetric dose. "We have achieved an impressive response rate from a single dose of therapy," said Wahl. "We can adjust the dose, depending on how it behaves in a person," he added, saying, "Nuclear medicine has a clear effect on lymphoma."

The current standard course of treatment for lymphoma is intensive chemotherapy. Patients receive chemotherapy every three weeks over a time period of up to six months. This treatment has unpleasant side effects, including nausea, hair loss and infections. With the nuclear medicine treatment, patients find that the most common side effect is a temporary lowering of blood counts for several weeks. Patients are now offered a choice of "months of chemotherapy or a tracer and treatment dose given over about a week," said Wahl.

Results are even more promising using tositumomab and iodine-131 tositumomab earlier in the course of the illness before many chemotherapies have failed. "Efficacy by Treatment Course Following Tositumomab and Iodine I-131 Tositumomab (the Bexxar® Therapeutic Regimen) and Chemotherapy" showed that while response and duration of response to the radioactive antibody treatment declined with each chemotherapeutic encounter, the radioactive antibody treatment "produced response rates and durations that exceeded those following chemotherapy," said Wahl. Earlier this year, the use of this form of treatment in previously untreated patients with non-Hodgkin’s lymphoma was reported to show a 95 percent response rate, suggesting this form of treatment should be considered earlier in the course of the illness, he noted.

Non-Hodgkin’s lymphoma is a cancer of the lymphatic system, the body’s blood-filtering tissues that help to fight infection and disease. A variety of factors including congenital and acquired immunodeficiency states--as well as infectious, physical and chemical agents--have been associated with an increased risk of developing non-Hodgkin’s lymphoma. This year, more than 56,000 new cases of non-Hodgkin’s lymphoma will be detected and more than 19,000 deaths will occur in the United States, according to cancer experts. This cancer of the immune system became more familiar to the general public as it struck celebrities such as Jackie Kennedy Onassis, baseball great Roger Maris and King Hussein of Jordan.

Investigators from France and Germany studied a new form of radioimmunotherapy that utilizes a humanized monoclonal antibody against the CD22 tumor marker expressed by non-Hodgkin’s lymphoma cells. Investigators used a specific antibody, which mainly consists of human material, to carry a potent radioisotope because the internalizing properties of the antibody are particularly suited to selectively localizing the radiation in the lymphoma cells, according to the results of "Fractionated Radioimmunotherapy in NHL With DOTA-Conjugated, Humanized Anti-CD22 Epratuzumab at High Cumulative 90Y Doses."

"Fractionated radioimmunotherapy (RIT) is feasible and our data suggest better safety results than bolus RIT, since patients appear to tolerate higher doses of therapy. Such radioimmunotherapy methods and reagents should expand the opportunities for the therapy of blood-type cancers and encourage our pursuit of this nuclear medicine technology for the treatment of more therapy-resistant solid cancer," said Jean-Francois Chatal, M.D., with the Institut de Biologie, INSERM, Nantes, France. "This multicenter trial is also evaluating the safety and efficacy of this agent in a continuing dose-escalation trial," added the SNM member.

Chatal commented, "Radioimmunotherapy has already been introduced into the management of indolent non-Hodgkin’s lymphoma patients with Zevalin® and Bexxar®. We are encouraged by the results of a humanized antibody targeting a different target of non-Hodgkin’s lymphoma cells that may be particularly effective with a therapeutic radiometal." He continued, "Since the antibody is humanized, we chose to give it repeatedly, in smaller doses than the regimen used by the other two products, with the aim of making it more tolerable and possibly more effective. So far, the high cumulative dose levels that have been achieved--and the very encouraging clinical results--both appear to support our idea."

"These three studies represent significant advances and future trends in therapy for patients with non-Hodgkin’s lymphoma," said Lale Kostakoglu, M.D., vice chair of the SNM Scientific Program Committee’s Oncology/Hematology Track and an associate professor at Cornell University’s Weill Medical School who is also on staff in the department of radiology, division of nuclear medicine, at New York Presbyterian Hospital.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>