Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program uses brain scans to assess risk of Alzheimer’s

20.06.2005


New York University School of Medicine researchers have developed a brain scan-based computer program that quickly and accurately measures metabolic activity in a key region of the brain affected in the early stages of Alzheimer’s disease. Applying the program, they demonstrated that reductions in brain metabolism in healthy individuals were associated with the later development of the memory robbing disease, according to a new study.



"This is the first demonstration that reduced metabolic activity in the hippocampus may be used to help predict future Alzheimer’s disease," says Lisa Mosconi, Ph.D., a research scientist in the Department of Psychiatry, who developed the computer program and led the new study. "Although our findings need to be replicated in other studies," she says, "our technique offers the possibility that we will be able to screen for Alzheimer’s in individuals who aren’t cognitively impaired."

Dr. Mosconi and colleagues have recently published the technical details of the program, called "HipMask," in the June 2005 issue of the journal Neurology. She will present the new findings on June 20 at the Alzheimer’s Association International Conference on Prevention of Dementia held in Washington.


The computer program is an image analysis technique that allows researchers to standardize and computer automate the sampling of PET brain scans. The NYU researchers hope the technique will enable doctors to measure the metabolic rate of the hippocampus and detect below-normal metabolic activity.

The technique grew out of years of research by Mony de Leon, Ed.D., Professor of Psychiatry and Director of the Center for Brain Health. His group was the first to demonstrate with CT and later with MRI scans that the hippocampus, a sea-horse shaped area of the brain associated with memory and learning, diminishes in size as Alzheimer’s disease progresses from mild cognitive impairment to full-blown dementia.

Yet until now there has been no reliable way to accurately and quickly measure the hippocampal area of the brain on a PET scan. The hippocampus is small and its size and shape are affected greatly in individuals with Alzheimer’s, making it difficult to sample this region. HipMask is a sampling technique that uses MRI to anatomically probe the PET scan.

MRI relies on electromagnetic energy to excite water molecules in the brain to create an anatomical map of the brain. The MRI was used in the study to determine the total volume of the hippocampus and then to define that portion (namely the HipMask) that was shared by all persons regardless of their disease status. PET employs radioactively labeled glucose to show the brain at work and the HipMask was applied to these scans to derive estimates of the hippocampal glucose metabolism.

The researchers followed 53 healthy, normal subjects between the ages of 54 and 80 for at least 9 years and in some cases for as long as 24 years. All subjects received two FDG-PET scans -- one at baseline and a follow-up after 3 years. Thirty individuals had a second follow-up scan after another seven years. Altogether there were 136 PET scans.

The researchers applied the HipMask to all 136 scans. The results showed that hippocampal glucose metabolism, as determined by the HipMask, was significantly reduced 15% to 40% on the first scan, compared to controls, of those 25 individuals who would later experience cognitive decline related to either mild cognitive impairment or to Alzheimer’s. The researchers found that the baseline hippocampal glucose metabolism was the only brain or clinical measure that predicted the future cognitive decline.

"Right now, we can show with great accuracy who will develop Alzheimer’s nine years in advance of symptoms, and our projections suggest we might be able to take that out as far as 15 years," says Dr. de Leon, whose longitudinal study is funded by the National Institutes of Health (NIH).

"Our basic results will need to be replicated in other studies and expanded to include PET data from diverse patient groups," adds Dr. De Leon. "But we’re confident this is a strong beginning, demonstrating accurate detection of early Alzheimer’s disease. Now we have a better tool to examine disease progression, and we anticipate this might open some doors to prevention treatment strategies."

Pamela Mcdonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>