Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New computer program uses brain scans to assess risk of Alzheimer’s

20.06.2005


New York University School of Medicine researchers have developed a brain scan-based computer program that quickly and accurately measures metabolic activity in a key region of the brain affected in the early stages of Alzheimer’s disease. Applying the program, they demonstrated that reductions in brain metabolism in healthy individuals were associated with the later development of the memory robbing disease, according to a new study.



"This is the first demonstration that reduced metabolic activity in the hippocampus may be used to help predict future Alzheimer’s disease," says Lisa Mosconi, Ph.D., a research scientist in the Department of Psychiatry, who developed the computer program and led the new study. "Although our findings need to be replicated in other studies," she says, "our technique offers the possibility that we will be able to screen for Alzheimer’s in individuals who aren’t cognitively impaired."

Dr. Mosconi and colleagues have recently published the technical details of the program, called "HipMask," in the June 2005 issue of the journal Neurology. She will present the new findings on June 20 at the Alzheimer’s Association International Conference on Prevention of Dementia held in Washington.


The computer program is an image analysis technique that allows researchers to standardize and computer automate the sampling of PET brain scans. The NYU researchers hope the technique will enable doctors to measure the metabolic rate of the hippocampus and detect below-normal metabolic activity.

The technique grew out of years of research by Mony de Leon, Ed.D., Professor of Psychiatry and Director of the Center for Brain Health. His group was the first to demonstrate with CT and later with MRI scans that the hippocampus, a sea-horse shaped area of the brain associated with memory and learning, diminishes in size as Alzheimer’s disease progresses from mild cognitive impairment to full-blown dementia.

Yet until now there has been no reliable way to accurately and quickly measure the hippocampal area of the brain on a PET scan. The hippocampus is small and its size and shape are affected greatly in individuals with Alzheimer’s, making it difficult to sample this region. HipMask is a sampling technique that uses MRI to anatomically probe the PET scan.

MRI relies on electromagnetic energy to excite water molecules in the brain to create an anatomical map of the brain. The MRI was used in the study to determine the total volume of the hippocampus and then to define that portion (namely the HipMask) that was shared by all persons regardless of their disease status. PET employs radioactively labeled glucose to show the brain at work and the HipMask was applied to these scans to derive estimates of the hippocampal glucose metabolism.

The researchers followed 53 healthy, normal subjects between the ages of 54 and 80 for at least 9 years and in some cases for as long as 24 years. All subjects received two FDG-PET scans -- one at baseline and a follow-up after 3 years. Thirty individuals had a second follow-up scan after another seven years. Altogether there were 136 PET scans.

The researchers applied the HipMask to all 136 scans. The results showed that hippocampal glucose metabolism, as determined by the HipMask, was significantly reduced 15% to 40% on the first scan, compared to controls, of those 25 individuals who would later experience cognitive decline related to either mild cognitive impairment or to Alzheimer’s. The researchers found that the baseline hippocampal glucose metabolism was the only brain or clinical measure that predicted the future cognitive decline.

"Right now, we can show with great accuracy who will develop Alzheimer’s nine years in advance of symptoms, and our projections suggest we might be able to take that out as far as 15 years," says Dr. de Leon, whose longitudinal study is funded by the National Institutes of Health (NIH).

"Our basic results will need to be replicated in other studies and expanded to include PET data from diverse patient groups," adds Dr. De Leon. "But we’re confident this is a strong beginning, demonstrating accurate detection of early Alzheimer’s disease. Now we have a better tool to examine disease progression, and we anticipate this might open some doors to prevention treatment strategies."

Pamela Mcdonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Real-time imaging of lung lesions during surgery helps localize tumors and improve precision
30.07.2015 | American Association for Thoracic Surgery

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>