Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Plastics For Medicine

17.06.2005


Biopolymers obtained by Russian researchers with the help of hydrogen bacteria, are compatible with tissues of the organism and are autodestractive after a while. That makes such biopolymers indispensable for medical articles.



Polymers of microbe origin, or biopolymers, have recently drawn increasing attention of a great variety of specialists. These polymers have two important advantages. Firstly, they get destroyed in the environment and thus solve the contamination problem. Secondly, they are biocompatible, and consequently, they are not rejected by the organism when applied for medical purposes. The Krasnoyarsk and Moscow researchers from the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences) and ??? “Biokhimmash” supported by the International Science and Technology Center are developing technology of biopolymer production and manufacturing of medical articles from them.

These are polymers of oxyderivative fatty acids, the so-called polyhydroxyalkanoates (PHAs). Some microorganism, for example hydrogen bacteria that get vital energy via oxidizing hydrogen, are able to synthesize PHAs. PHAs have a lot of advantages - their physicochemical characteristics, for example, thermoplasticity, is the same as that of polypropylene and polyethylene, and on top of that they possess antioxidant and optical properties and piezoelectric effect. Besides, like any biopolymers, they are compatible with tissues of organism and get destroyed in the environment. That is why they are promising for use in medicine (surgical and disposable materials), pharmacology (prolongation of drug action), food industry (packing and antioxidant materials), agriculture (seed obducers, destructible films).


The researchers tested the polymer production technology first in the laboratory and then in production environment. So far, the scientists can obtain three types of polymers: polyoxybutyrate and its copolymers with oxybutyrate and oxyvalerianate, but in the future the range of goods will increase. Within a week, 1 kilogram of polymer (or up to 50 kilograms per year) can be produced on the installation.

The researchers are mainly interested in PHA utilization for medical articles. They have already produced out of them wound healing films, suture material, covering for vessel prostheses (stents), matrix for bioartificial organs and implantates, membranes, microparticles, etc.

It is interesting to note that various articles need absolutely different rate of polymer biodegradation - suture threads and films should dissolve quickly, but stents and valve prostheses should serve for a long time. How do scientists solve this problem? “The degradation rate depends on the surface type, it can vary if different fillings are used, or it can be accelerated when needed through preliminary gamma irradiation”, explains Tatiana Volova.

Biopolymers underwent tests on animals at the Scientific Research Institute of Transplantology and Bioartificial Organs (Ministry of Health of the Russian Federation). Trade mark of biomaterial – ElastoPOBtm – has been registered. Clinical trials have been started. Specialists say that the current demand for polymers for medicine makes 400 thousand tons per year, therefore they consider industrial production of destructible bioplastics economically feasible. Based on the polymer’s sale price of 95 rubles per kilogram, they have already calculated polymer’s pay-back, return and profitability.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>