Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Plastics For Medicine

17.06.2005


Biopolymers obtained by Russian researchers with the help of hydrogen bacteria, are compatible with tissues of the organism and are autodestractive after a while. That makes such biopolymers indispensable for medical articles.



Polymers of microbe origin, or biopolymers, have recently drawn increasing attention of a great variety of specialists. These polymers have two important advantages. Firstly, they get destroyed in the environment and thus solve the contamination problem. Secondly, they are biocompatible, and consequently, they are not rejected by the organism when applied for medical purposes. The Krasnoyarsk and Moscow researchers from the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences) and ??? “Biokhimmash” supported by the International Science and Technology Center are developing technology of biopolymer production and manufacturing of medical articles from them.

These are polymers of oxyderivative fatty acids, the so-called polyhydroxyalkanoates (PHAs). Some microorganism, for example hydrogen bacteria that get vital energy via oxidizing hydrogen, are able to synthesize PHAs. PHAs have a lot of advantages - their physicochemical characteristics, for example, thermoplasticity, is the same as that of polypropylene and polyethylene, and on top of that they possess antioxidant and optical properties and piezoelectric effect. Besides, like any biopolymers, they are compatible with tissues of organism and get destroyed in the environment. That is why they are promising for use in medicine (surgical and disposable materials), pharmacology (prolongation of drug action), food industry (packing and antioxidant materials), agriculture (seed obducers, destructible films).


The researchers tested the polymer production technology first in the laboratory and then in production environment. So far, the scientists can obtain three types of polymers: polyoxybutyrate and its copolymers with oxybutyrate and oxyvalerianate, but in the future the range of goods will increase. Within a week, 1 kilogram of polymer (or up to 50 kilograms per year) can be produced on the installation.

The researchers are mainly interested in PHA utilization for medical articles. They have already produced out of them wound healing films, suture material, covering for vessel prostheses (stents), matrix for bioartificial organs and implantates, membranes, microparticles, etc.

It is interesting to note that various articles need absolutely different rate of polymer biodegradation - suture threads and films should dissolve quickly, but stents and valve prostheses should serve for a long time. How do scientists solve this problem? “The degradation rate depends on the surface type, it can vary if different fillings are used, or it can be accelerated when needed through preliminary gamma irradiation”, explains Tatiana Volova.

Biopolymers underwent tests on animals at the Scientific Research Institute of Transplantology and Bioartificial Organs (Ministry of Health of the Russian Federation). Trade mark of biomaterial – ElastoPOBtm – has been registered. Clinical trials have been started. Specialists say that the current demand for polymers for medicine makes 400 thousand tons per year, therefore they consider industrial production of destructible bioplastics economically feasible. Based on the polymer’s sale price of 95 rubles per kilogram, they have already calculated polymer’s pay-back, return and profitability.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>