Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Plastics For Medicine

17.06.2005


Biopolymers obtained by Russian researchers with the help of hydrogen bacteria, are compatible with tissues of the organism and are autodestractive after a while. That makes such biopolymers indispensable for medical articles.



Polymers of microbe origin, or biopolymers, have recently drawn increasing attention of a great variety of specialists. These polymers have two important advantages. Firstly, they get destroyed in the environment and thus solve the contamination problem. Secondly, they are biocompatible, and consequently, they are not rejected by the organism when applied for medical purposes. The Krasnoyarsk and Moscow researchers from the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences) and ??? “Biokhimmash” supported by the International Science and Technology Center are developing technology of biopolymer production and manufacturing of medical articles from them.

These are polymers of oxyderivative fatty acids, the so-called polyhydroxyalkanoates (PHAs). Some microorganism, for example hydrogen bacteria that get vital energy via oxidizing hydrogen, are able to synthesize PHAs. PHAs have a lot of advantages - their physicochemical characteristics, for example, thermoplasticity, is the same as that of polypropylene and polyethylene, and on top of that they possess antioxidant and optical properties and piezoelectric effect. Besides, like any biopolymers, they are compatible with tissues of organism and get destroyed in the environment. That is why they are promising for use in medicine (surgical and disposable materials), pharmacology (prolongation of drug action), food industry (packing and antioxidant materials), agriculture (seed obducers, destructible films).


The researchers tested the polymer production technology first in the laboratory and then in production environment. So far, the scientists can obtain three types of polymers: polyoxybutyrate and its copolymers with oxybutyrate and oxyvalerianate, but in the future the range of goods will increase. Within a week, 1 kilogram of polymer (or up to 50 kilograms per year) can be produced on the installation.

The researchers are mainly interested in PHA utilization for medical articles. They have already produced out of them wound healing films, suture material, covering for vessel prostheses (stents), matrix for bioartificial organs and implantates, membranes, microparticles, etc.

It is interesting to note that various articles need absolutely different rate of polymer biodegradation - suture threads and films should dissolve quickly, but stents and valve prostheses should serve for a long time. How do scientists solve this problem? “The degradation rate depends on the surface type, it can vary if different fillings are used, or it can be accelerated when needed through preliminary gamma irradiation”, explains Tatiana Volova.

Biopolymers underwent tests on animals at the Scientific Research Institute of Transplantology and Bioartificial Organs (Ministry of Health of the Russian Federation). Trade mark of biomaterial – ElastoPOBtm – has been registered. Clinical trials have been started. Specialists say that the current demand for polymers for medicine makes 400 thousand tons per year, therefore they consider industrial production of destructible bioplastics economically feasible. Based on the polymer’s sale price of 95 rubles per kilogram, they have already calculated polymer’s pay-back, return and profitability.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>