Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Plastics For Medicine

17.06.2005


Biopolymers obtained by Russian researchers with the help of hydrogen bacteria, are compatible with tissues of the organism and are autodestractive after a while. That makes such biopolymers indispensable for medical articles.



Polymers of microbe origin, or biopolymers, have recently drawn increasing attention of a great variety of specialists. These polymers have two important advantages. Firstly, they get destroyed in the environment and thus solve the contamination problem. Secondly, they are biocompatible, and consequently, they are not rejected by the organism when applied for medical purposes. The Krasnoyarsk and Moscow researchers from the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences) and ??? “Biokhimmash” supported by the International Science and Technology Center are developing technology of biopolymer production and manufacturing of medical articles from them.

These are polymers of oxyderivative fatty acids, the so-called polyhydroxyalkanoates (PHAs). Some microorganism, for example hydrogen bacteria that get vital energy via oxidizing hydrogen, are able to synthesize PHAs. PHAs have a lot of advantages - their physicochemical characteristics, for example, thermoplasticity, is the same as that of polypropylene and polyethylene, and on top of that they possess antioxidant and optical properties and piezoelectric effect. Besides, like any biopolymers, they are compatible with tissues of organism and get destroyed in the environment. That is why they are promising for use in medicine (surgical and disposable materials), pharmacology (prolongation of drug action), food industry (packing and antioxidant materials), agriculture (seed obducers, destructible films).


The researchers tested the polymer production technology first in the laboratory and then in production environment. So far, the scientists can obtain three types of polymers: polyoxybutyrate and its copolymers with oxybutyrate and oxyvalerianate, but in the future the range of goods will increase. Within a week, 1 kilogram of polymer (or up to 50 kilograms per year) can be produced on the installation.

The researchers are mainly interested in PHA utilization for medical articles. They have already produced out of them wound healing films, suture material, covering for vessel prostheses (stents), matrix for bioartificial organs and implantates, membranes, microparticles, etc.

It is interesting to note that various articles need absolutely different rate of polymer biodegradation - suture threads and films should dissolve quickly, but stents and valve prostheses should serve for a long time. How do scientists solve this problem? “The degradation rate depends on the surface type, it can vary if different fillings are used, or it can be accelerated when needed through preliminary gamma irradiation”, explains Tatiana Volova.

Biopolymers underwent tests on animals at the Scientific Research Institute of Transplantology and Bioartificial Organs (Ministry of Health of the Russian Federation). Trade mark of biomaterial – ElastoPOBtm – has been registered. Clinical trials have been started. Specialists say that the current demand for polymers for medicine makes 400 thousand tons per year, therefore they consider industrial production of destructible bioplastics economically feasible. Based on the polymer’s sale price of 95 rubles per kilogram, they have already calculated polymer’s pay-back, return and profitability.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>