Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New memory drug works best in combination with older remedy

13.06.2005


An experimental drug combined with an already-popular memory-enhancing compound may further delay memory loss in patients with Alzheimer’s disease and other dementias, Johns Hopkins University scientists, in collaboration with researchers from University of North Carolina, have found.



The findings, described in the June issue of Neuropsychopharmacology, also indicate that the experimental treatment in question – a compound known as SGS742 – works by blocking certain chemicals that interfere with memory formation.

"The findings in laboratory animals – both improved memory in our tests and evidence that the drug targets the biology for making memories in the brain – places this drug on solid footing as a candidate therapeutic agent," said the study’s lead author, Michela Gallagher.


SGS742, previously shown to improve memory in animals, is an experimental treatment for memory disorders. It is currently in human clinical trials led by California-based Saegis Pharmaceuticals Inc., which holds a worldwide exclusive license granted by the drug’s developer.

Gallagher, a Krieger-Eisenhower Professor and the chair of the Department of Psychological and Brain Sciences in the university’s Zanvyl Krieger School of Arts and Sciences, said these studies did not address SGS742’s potential as a cure or preventive treatment for Alzheimer’s disease itself. They were intended, rather, to assess its potential as a treatment for the disease’s key symptom: memory loss.

"Memory impairment occurs early in the disease and worsens as the disease progresses. However, until the later stages of the disease, memory is impaired but not entirely gone," Gallagher said. "By augmenting the brain’s memory-making ability, drugs could be used to treat this symptom and to improve the quality of life for patients who have a disease that has a slow progression over years."

SGS742 has been found in clinical trials to be beneficial to humans with mild cognitive impairment. The Johns Hopkins team investigated how the compound works. The team compared SGS742 with Aricept ® (generic name: donepezil), an approved and frequently used treatment for Alzheimer’s disease manufactured by Eisai Inc. Ltd. The Johns Hopkins researchers found in animal studies that a combination of SGS742 and Aricept ® improved memory to a larger degree than either drug alone, implying a potential for future combination therapy protocols.

The research team conducted this study on 60 normal young male rats who were not memory-impaired. Each rat was given at various times SGS742, Aricept ®, a combination of the two drugs or no drugs at all, and was tested on its skill navigating a series of mazes that placed increasing demands on its memory.

"The mazes were designed to take advantage of the rats’ natural foraging instincts," explains Rebecca Haberman, an associate research scientist at Johns Hopkins who is a co-author on the study. "Rats will not readily return to the place where they previously ate all the available food. So we asked the rats to remember where they had found treats in the ’information’ session, and to look for food in new places during the recall tests."

It quickly became apparent that the rodents performed better when they were given either SGS742 or Aricept ® rather than no drug at all. What’s more, those rats given both SGS742 and Aricept ® were able to both acquire and retain information more quickly and for a longer period of time than when they had not been thus treated.

Researchers also analyzed the interaction of the compound with the biological mechanisms involved in the creation of long-term memory. They learned that SGS742 alters the activity of gene control machinery that is important for memory consolidation.

They focused on a molecule, CREB2, that is believed to block memory formation by binding to a specific gene sequence. Analysis of the brains of the rats revealed that those who had been treated with SGS742 had less CREB2 bound to this important gene sequence than did the rats that had not been treated.

"This indicates that SGS742-treated rats had an easier time activating the appropriate genes necessary for memory consolidation," Haberman said. "The fact that SGS742 improved memory even when it was given after the rats were exposed to information further supports that the drug is important for retaining information, and not just for obtaining it."

Funding for this research was provided by Saegis Pharmaceuticals Inc. Authors on the paper include A. Helm, R.P. Haberman, S.L. Dean, and M. Gallagher of the Department of Psychological and Brain Sciences of The Johns Hopkins University, E.C. Hoyt, P.K. Lund of the Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, and T. Melcher of Saegis Pharmaceuticals Inc., Half Moon Bay, Calif.

Gallagher is a scientific consultant to Saegis Pharmaceuticals and has an equity interest in the company. Under a licensing arrangement between The Johns Hopkins University and Saegis, Gallagher is entitled to a share of royalties received by the university on sales of products resulting from this research.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu
http://www.psy.jhu.edu/fs/faculty/gallagher.htm
http://www.psy.jhu.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>