Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research to Match Tumours With the Most Effective Treatments

09.06.2005


Testing tumour cells to predict whether radiation or surgery would be the best form of treatment.



When treating people with cancer, time can be of the essence, and work is going ahead at the University of Leicester to learn how to predict which tumours can be treated more effectively by radiation therapy and which by surgery; this could save several weeks of inappropriate treatment and hopefully improve treatment outcome.

When you treat bladder cancers with radiation therapy, some will be cured and some will not. Radiotherapy can last for five weeks, and it is only after a period of 3-6 months when it is possible to know whether the treatment has worked.


Those people for whom radiation treatment has failed then have to undergo surgery, which in turn may be less effective because of the time that has passed since diagnosis and because the surgeon is now dealing with irradiated tissue.

If you could test tumour cells and predict accurately whether radiation or surgery would be the best form of treatment, then those who needed surgery could have it much sooner and the surgeon would be dealing with healthy tissue.

Dr Don Jones, who is leading this research in the University’s Biocentre, part of the Department of Cancer Studies and Molecular Medicine, is one of very few people in the UK working in this field.

His research team has identified a biological test called Comet Assay, which, through recording variation in the extent of DNA damage, formation and repair, seem able to predict those cells which are sensitive to radiation and those which are not. They are now working towards transforming the laboratory method for use in clinics, working with bladder tumours. Dr Jones commented:

“For about half of the patients with muscle invasive bladder cancer radiation therapy fails. These patients are disadvantaged as they are exposed to the additional risks associated with both radiation treatment and subsequent surgery, and may experience further disease progression before any secondary treatment is considered. Consequently, the appropriate choice of primary treatment is critical for the outcome of the patient.

“Unfortunately, there is currently no method of predicting outcome prior to radiation treatment. If radiation response could be predicted in advance, the appropriate treatment option could be identified at an earlier stage; radiation treatment could be promoted in patients with tumours expected to respond, whilst patients with non-responsive tumours could be identified and offered surgery at an earlier stage. In this way, hopefully, cure rates and hence survival could be improved and unnecessary treatment avoided.

“We are trying to investigate protocols we use in the lab as predictive tests. Comet Assay might not be the tool that actually goes into clinics. We need to see how we can translate our lab work into a clinical setting. We may need to find out how Comet Assay results occur first.”

Success will lead to the first clinical use of predictive test of tumour Radiotherapy response, and will increase understanding of tumour radiosensitivity.

The research has received funding from Cancer Research UK (CRUK) and involves researchers and clinicians based at the University of Leicester, the Leicester General Hospital and the University of Ulster.

Cancer Research UK relies almost entirely on public donations to fund its life-saving research, and its annual Race for life, supported by Tesco, will take place in Leicester this year on Sunday 10 July, at Western Park.

Leicestershire organisers are hoping to raise £235,000, topping last year’s figure of £226,849. Countrywide, Race for Life aims to raise £23M. The charity funds more than 3,000 scientists, doctors and nurses based throughout the UK. In 2003/2004, Cancer Research UK’s total science spend was around £213M.

Cancer Research UK’s 5 km Race for Life is a series of 162 fundraising walks or runs open to all women across the UK. To enter, log on to www.raceforlife.org or call the hotline on 08705 134 314.

Ather Mirza | alfa
Further information:
http://ebulletin.le.ac.uk/news/press-releases/2000-2009/2005/06/nparticle-nh7-tgm-39c

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>