Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research to Match Tumours With the Most Effective Treatments

09.06.2005


Testing tumour cells to predict whether radiation or surgery would be the best form of treatment.



When treating people with cancer, time can be of the essence, and work is going ahead at the University of Leicester to learn how to predict which tumours can be treated more effectively by radiation therapy and which by surgery; this could save several weeks of inappropriate treatment and hopefully improve treatment outcome.

When you treat bladder cancers with radiation therapy, some will be cured and some will not. Radiotherapy can last for five weeks, and it is only after a period of 3-6 months when it is possible to know whether the treatment has worked.


Those people for whom radiation treatment has failed then have to undergo surgery, which in turn may be less effective because of the time that has passed since diagnosis and because the surgeon is now dealing with irradiated tissue.

If you could test tumour cells and predict accurately whether radiation or surgery would be the best form of treatment, then those who needed surgery could have it much sooner and the surgeon would be dealing with healthy tissue.

Dr Don Jones, who is leading this research in the University’s Biocentre, part of the Department of Cancer Studies and Molecular Medicine, is one of very few people in the UK working in this field.

His research team has identified a biological test called Comet Assay, which, through recording variation in the extent of DNA damage, formation and repair, seem able to predict those cells which are sensitive to radiation and those which are not. They are now working towards transforming the laboratory method for use in clinics, working with bladder tumours. Dr Jones commented:

“For about half of the patients with muscle invasive bladder cancer radiation therapy fails. These patients are disadvantaged as they are exposed to the additional risks associated with both radiation treatment and subsequent surgery, and may experience further disease progression before any secondary treatment is considered. Consequently, the appropriate choice of primary treatment is critical for the outcome of the patient.

“Unfortunately, there is currently no method of predicting outcome prior to radiation treatment. If radiation response could be predicted in advance, the appropriate treatment option could be identified at an earlier stage; radiation treatment could be promoted in patients with tumours expected to respond, whilst patients with non-responsive tumours could be identified and offered surgery at an earlier stage. In this way, hopefully, cure rates and hence survival could be improved and unnecessary treatment avoided.

“We are trying to investigate protocols we use in the lab as predictive tests. Comet Assay might not be the tool that actually goes into clinics. We need to see how we can translate our lab work into a clinical setting. We may need to find out how Comet Assay results occur first.”

Success will lead to the first clinical use of predictive test of tumour Radiotherapy response, and will increase understanding of tumour radiosensitivity.

The research has received funding from Cancer Research UK (CRUK) and involves researchers and clinicians based at the University of Leicester, the Leicester General Hospital and the University of Ulster.

Cancer Research UK relies almost entirely on public donations to fund its life-saving research, and its annual Race for life, supported by Tesco, will take place in Leicester this year on Sunday 10 July, at Western Park.

Leicestershire organisers are hoping to raise £235,000, topping last year’s figure of £226,849. Countrywide, Race for Life aims to raise £23M. The charity funds more than 3,000 scientists, doctors and nurses based throughout the UK. In 2003/2004, Cancer Research UK’s total science spend was around £213M.

Cancer Research UK’s 5 km Race for Life is a series of 162 fundraising walks or runs open to all women across the UK. To enter, log on to www.raceforlife.org or call the hotline on 08705 134 314.

Ather Mirza | alfa
Further information:
http://ebulletin.le.ac.uk/news/press-releases/2000-2009/2005/06/nparticle-nh7-tgm-39c

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>