Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research to Match Tumours With the Most Effective Treatments

09.06.2005


Testing tumour cells to predict whether radiation or surgery would be the best form of treatment.



When treating people with cancer, time can be of the essence, and work is going ahead at the University of Leicester to learn how to predict which tumours can be treated more effectively by radiation therapy and which by surgery; this could save several weeks of inappropriate treatment and hopefully improve treatment outcome.

When you treat bladder cancers with radiation therapy, some will be cured and some will not. Radiotherapy can last for five weeks, and it is only after a period of 3-6 months when it is possible to know whether the treatment has worked.


Those people for whom radiation treatment has failed then have to undergo surgery, which in turn may be less effective because of the time that has passed since diagnosis and because the surgeon is now dealing with irradiated tissue.

If you could test tumour cells and predict accurately whether radiation or surgery would be the best form of treatment, then those who needed surgery could have it much sooner and the surgeon would be dealing with healthy tissue.

Dr Don Jones, who is leading this research in the University’s Biocentre, part of the Department of Cancer Studies and Molecular Medicine, is one of very few people in the UK working in this field.

His research team has identified a biological test called Comet Assay, which, through recording variation in the extent of DNA damage, formation and repair, seem able to predict those cells which are sensitive to radiation and those which are not. They are now working towards transforming the laboratory method for use in clinics, working with bladder tumours. Dr Jones commented:

“For about half of the patients with muscle invasive bladder cancer radiation therapy fails. These patients are disadvantaged as they are exposed to the additional risks associated with both radiation treatment and subsequent surgery, and may experience further disease progression before any secondary treatment is considered. Consequently, the appropriate choice of primary treatment is critical for the outcome of the patient.

“Unfortunately, there is currently no method of predicting outcome prior to radiation treatment. If radiation response could be predicted in advance, the appropriate treatment option could be identified at an earlier stage; radiation treatment could be promoted in patients with tumours expected to respond, whilst patients with non-responsive tumours could be identified and offered surgery at an earlier stage. In this way, hopefully, cure rates and hence survival could be improved and unnecessary treatment avoided.

“We are trying to investigate protocols we use in the lab as predictive tests. Comet Assay might not be the tool that actually goes into clinics. We need to see how we can translate our lab work into a clinical setting. We may need to find out how Comet Assay results occur first.”

Success will lead to the first clinical use of predictive test of tumour Radiotherapy response, and will increase understanding of tumour radiosensitivity.

The research has received funding from Cancer Research UK (CRUK) and involves researchers and clinicians based at the University of Leicester, the Leicester General Hospital and the University of Ulster.

Cancer Research UK relies almost entirely on public donations to fund its life-saving research, and its annual Race for life, supported by Tesco, will take place in Leicester this year on Sunday 10 July, at Western Park.

Leicestershire organisers are hoping to raise £235,000, topping last year’s figure of £226,849. Countrywide, Race for Life aims to raise £23M. The charity funds more than 3,000 scientists, doctors and nurses based throughout the UK. In 2003/2004, Cancer Research UK’s total science spend was around £213M.

Cancer Research UK’s 5 km Race for Life is a series of 162 fundraising walks or runs open to all women across the UK. To enter, log on to www.raceforlife.org or call the hotline on 08705 134 314.

Ather Mirza | alfa
Further information:
http://ebulletin.le.ac.uk/news/press-releases/2000-2009/2005/06/nparticle-nh7-tgm-39c

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>