Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism and X-fragile syndrome

09.06.2005


According to the World Health organisation, the definition of autism is based on a specific pattern of behaviour characteristics, as neither its aetiology nor pathology is defined. This is why a search for autism markers is proposed at three levels: morphological, cytogenetic and molecular.



In the 80s, a research group at the Leioa campus of the University of the Basque Country worked on dermatoglyphs, an analysis technique applied to autistic children. Dermatoglyphs, or handprints and footprints, are useful in the morphological analysis of the symmetry of the human body.

That initial study of dermatoglyphs enabled the fluctuating asymmetry between the sides of the body to be seen, i.e. that asymmetry with a non-definable pattern being the more common amongst autistic children than in the rest of the population.


Fragile sites

Following on from this initial morphological study, the research took a cytogenetic turn. In this second phase, chromosomes of autistic children were analysed. This was undertaken with the knowledge that certain sites on the chromosomes were more prone to breaking than others. One of these fragile locations is found on the X chromosome and is known as FRAXA.

The results show that children with autism had a significantly greater frequency of expression of these fragile sites than the control population. The FRAXA fragile site expressed itself only amongst autistic children, although not in all. Thus, at a cytogenetic level, FRAXA s the most important marker for a genetic alteration that underlies autism.

Too many repetitions

Effectively, the genetic alteration on this location of the X chromosome was identified at the beginning of the 1990s. The gene known as FMR1 (Female Mental Retardation 1) is responsible for the X-fragile syndrome related to autism.

But not all autistic children showed this genetic alteration and, so, an analysis at a molecular level was undertaken in order to determine the prevalence of the X-fragile syndrome amongst individuals with mental backwardness in the Basque Country.

From a simple blood DNA analysis, it is known that the FMR1 gene has a CGG (cytosine- guanine-guanine) tri-nucleotide, usually repeated between 6 and 54 times in normal persons. On the other hand, amongst premutated persons, these repetitions appear between 55 and 200 times and, in those who have the mutated gene - i.e. those suffering from the X fragile syndrome -, they appear more than 200 times, reaching 1,000 repetitions in some cases.

The results of this analysis show that none of the individuals with the X-fragile mutation was of Basque origin though they had mental backwardness or autistic characteristics. These results led to the investigation of the stability of the FMR1 gene amongst the Basque population. The project was subsequently widened to undertake separate analyses of the different Basque regions. This study showed that there exist different mutational paths of the FMR1 gene amongst the Basque population and which may be of a relatively recent origin – thus explaining the absence of the X fragile syndrome amongst this population.

With this conclusion reached, the studies now target persons with the permutated form of the gene given that three pathologies associated with this CGG premutation have been discovered: moderate mental backwardness and autistic characteristics, premature ovarian failure before the age of 45 and ataxia – a pathology with trembling similar to that of Parkinson’s. In short, there is still much to investigate regarding the X fragile syndrome.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>