Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism and X-fragile syndrome

09.06.2005


According to the World Health organisation, the definition of autism is based on a specific pattern of behaviour characteristics, as neither its aetiology nor pathology is defined. This is why a search for autism markers is proposed at three levels: morphological, cytogenetic and molecular.



In the 80s, a research group at the Leioa campus of the University of the Basque Country worked on dermatoglyphs, an analysis technique applied to autistic children. Dermatoglyphs, or handprints and footprints, are useful in the morphological analysis of the symmetry of the human body.

That initial study of dermatoglyphs enabled the fluctuating asymmetry between the sides of the body to be seen, i.e. that asymmetry with a non-definable pattern being the more common amongst autistic children than in the rest of the population.


Fragile sites

Following on from this initial morphological study, the research took a cytogenetic turn. In this second phase, chromosomes of autistic children were analysed. This was undertaken with the knowledge that certain sites on the chromosomes were more prone to breaking than others. One of these fragile locations is found on the X chromosome and is known as FRAXA.

The results show that children with autism had a significantly greater frequency of expression of these fragile sites than the control population. The FRAXA fragile site expressed itself only amongst autistic children, although not in all. Thus, at a cytogenetic level, FRAXA s the most important marker for a genetic alteration that underlies autism.

Too many repetitions

Effectively, the genetic alteration on this location of the X chromosome was identified at the beginning of the 1990s. The gene known as FMR1 (Female Mental Retardation 1) is responsible for the X-fragile syndrome related to autism.

But not all autistic children showed this genetic alteration and, so, an analysis at a molecular level was undertaken in order to determine the prevalence of the X-fragile syndrome amongst individuals with mental backwardness in the Basque Country.

From a simple blood DNA analysis, it is known that the FMR1 gene has a CGG (cytosine- guanine-guanine) tri-nucleotide, usually repeated between 6 and 54 times in normal persons. On the other hand, amongst premutated persons, these repetitions appear between 55 and 200 times and, in those who have the mutated gene - i.e. those suffering from the X fragile syndrome -, they appear more than 200 times, reaching 1,000 repetitions in some cases.

The results of this analysis show that none of the individuals with the X-fragile mutation was of Basque origin though they had mental backwardness or autistic characteristics. These results led to the investigation of the stability of the FMR1 gene amongst the Basque population. The project was subsequently widened to undertake separate analyses of the different Basque regions. This study showed that there exist different mutational paths of the FMR1 gene amongst the Basque population and which may be of a relatively recent origin – thus explaining the absence of the X fragile syndrome amongst this population.

With this conclusion reached, the studies now target persons with the permutated form of the gene given that three pathologies associated with this CGG premutation have been discovered: moderate mental backwardness and autistic characteristics, premature ovarian failure before the age of 45 and ataxia – a pathology with trembling similar to that of Parkinson’s. In short, there is still much to investigate regarding the X fragile syndrome.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>