Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air pollution raises risk for dangerous arrhythmias among people with ICDs

02.06.2005


Researchers from the Harvard School of Public Health and colleagues from Boston area medical institutions have linked short term high pollution concentrations with an increased incidence of irregular and very dangerous heart arrhythmias among a group of cardiac patients from the greater Boston area who had implanted cardioverter defibrillators (ICD). The findings appear in the June 1, 2005 issue of Environmental Health Perspectives.



"Particulate pollution and gaseous pollution from automobiles, diesel engines and power plants have long been associated with causing serious problems for people with heart conditions," said Doug Dockery, lead author of the study and professor of environmental epidemiology at the Harvard School of Public Health. He continued, "In this study we wanted to see if there’s an increased risk of ventricular tachyarrhythmias, a very dangerous and rapid beating of the heart which can lead to sudden cardiac arrest. We monitored a group of Boston area residents at high risk of sudden cardiac death if not for their implanted defibrillators."

Between 1995 and 2002 the researchers monitored 203 Boston area patients from the Tufts University New England Medical Center who had implanted cardioverter defibrillators for episodes of tachyarrhythmias. Information on arrhythmias was recorded in the ICDs and retrieved during the patients’ regular clinical follow-up visits. Air pollution levels were measured at up to10 sites in the Boston metropolitan area for ozone, carbon monoxide, sulfur and nitrogen dioxide and at the Harvard School of Public Health for fine particles.


The researchers found a significant association of air pollution with an increased risk of ventrical tachyarrhythmias among patients who had experienced any kind of arrhythmia three days prior to the episode, particularly when levels of particulate air pollution, black carbon, nitrogen dioxide (all linked with motor vehicle emissions) and sulfur dioxide (linked to power plants) were present. The finding suggests that air pollution provokes ventricular tachyarrhythmias among people with acutely predisposed conditions. The researchers calculated that the ICD patients had a risk of potentially life threatening ventricular tachyarrhythmias linked with fine particulate pollution five times higher for risk of cardiovascular death than the people in the general public. For the highest risk patients, those with a recent ventricular arrhythmia episode, the increased risk for a new ventricular tachyarrhythmias was 97 percent for each 10 microgram per cubic meter increase of particulate pollution.

Dockery added, "What we found suggests that air pollution may act in combination with electrical instability of the heart to increase the risk for ventricular tachyarrhythmias. The data that ICDs collect on episodes of arrhythmias provides a significant resource for understanding the role of air pollution in triggering these events."

Kevin C. Myron | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>