Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique appears to stop abnormal blood vessel growth

01.06.2005


A manmade protein with a tail of amino acids delivered to target cells can dramatically reduce blood vessel growth that obstructs vision or feeds a tumor, researchers have found.



This new approach to inhibiting blood vessel growth, or angiogenesis, delivers "intraceptors" that sequester VEGF, a "linchpin" protein needed to make blood vessels, says Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and corresponding author on the study.

In a test tube as well as animal models for corneal injury and the deadly skin cancer, melanoma, MCG researchers have reduced destructive blood vessel proliferation by up to two-thirds. Findings are published in the May issue of Investigative Ophthalmology & Visual Science. "We have a promising new preclinical approach to treat conditions that involve blood vessel formation," says Dr. Ambati. These include corneal injury, the blinding wet form of macular degeneration, diabetic retinopathy and tumors, which need blood and oxygen to survive. Other angiogenesis inhibitors in use or under study target VEGF (vascular endothelial growth factor) after it has moved outside the cell, says Dr. Ambati, reducing new blood vessel growth by 30 percent to 50 percent.


"In theory, our approach works several steps ahead of where existing angiogenesis inhibitors work," he says. "The idea is that, hopefully, this would give you a therapeutic advantage by stopping VEGF where it’s produced. Scientists have found that several types of cells, including blood vessel cells and cancer cells, can make their own VEGF and receptor. If you have a junkie shooting up and making his own drug, you need to get inside him to break that cycle; getting his dealer is not enough. We have focused our research on attacking VEGF within cells. We want to break that autocrine loop," he says of the cell’s ability to supply itself with VEGF and a receptor.

To keep VEGF from ever leaving the protein factory where it’s made, MCG researchers created a gene that makes a version of Flt, a VEGF receptor identified nearly a decade ago, that has a tail of amino acids. The amino acid tail, a retention signal called KDEL, transforms Flt into a homing device and a death sentence for VEGF.

"It’s an arrest mechanism essentially," says Dr. Ambati. "It will bind and sequester. If you are VEGF and I am Flt-KDEL complex, I am going to grab you and keep you from leaving the room." If a protein spends too much time in the factory, called the endoplasmic reticulum, the cell destroys it.

The researchers get intraceptors inside cells by putting the manmade gene that makes them inside a carrier called a plasmid, an approach used in gene therapy and naturally by bacteria in the body to carry around extra genes.

Preliminary evidence indicates this technology can not only prevent blood vessel formation but also help eliminate existing blood vessels, Dr. Ambati says.

Much laboratory work remains before clinical trials are considered, he says. The researchers need to study the process in the retina, the target of abnormal blood vessel growth that occurs in the wet form of macular degeneration as well as diabetic retinopathy. He plans to do additional cancer studies and longer-term follow up the technology’s ability to forestall destructive new growth. Meanwhile, the MCG Office of Technology Transfer and Economic has obtained a provisional patent on the technology.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>