Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique appears to stop abnormal blood vessel growth

01.06.2005


A manmade protein with a tail of amino acids delivered to target cells can dramatically reduce blood vessel growth that obstructs vision or feeds a tumor, researchers have found.



This new approach to inhibiting blood vessel growth, or angiogenesis, delivers "intraceptors" that sequester VEGF, a "linchpin" protein needed to make blood vessels, says Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and corresponding author on the study.

In a test tube as well as animal models for corneal injury and the deadly skin cancer, melanoma, MCG researchers have reduced destructive blood vessel proliferation by up to two-thirds. Findings are published in the May issue of Investigative Ophthalmology & Visual Science. "We have a promising new preclinical approach to treat conditions that involve blood vessel formation," says Dr. Ambati. These include corneal injury, the blinding wet form of macular degeneration, diabetic retinopathy and tumors, which need blood and oxygen to survive. Other angiogenesis inhibitors in use or under study target VEGF (vascular endothelial growth factor) after it has moved outside the cell, says Dr. Ambati, reducing new blood vessel growth by 30 percent to 50 percent.


"In theory, our approach works several steps ahead of where existing angiogenesis inhibitors work," he says. "The idea is that, hopefully, this would give you a therapeutic advantage by stopping VEGF where it’s produced. Scientists have found that several types of cells, including blood vessel cells and cancer cells, can make their own VEGF and receptor. If you have a junkie shooting up and making his own drug, you need to get inside him to break that cycle; getting his dealer is not enough. We have focused our research on attacking VEGF within cells. We want to break that autocrine loop," he says of the cell’s ability to supply itself with VEGF and a receptor.

To keep VEGF from ever leaving the protein factory where it’s made, MCG researchers created a gene that makes a version of Flt, a VEGF receptor identified nearly a decade ago, that has a tail of amino acids. The amino acid tail, a retention signal called KDEL, transforms Flt into a homing device and a death sentence for VEGF.

"It’s an arrest mechanism essentially," says Dr. Ambati. "It will bind and sequester. If you are VEGF and I am Flt-KDEL complex, I am going to grab you and keep you from leaving the room." If a protein spends too much time in the factory, called the endoplasmic reticulum, the cell destroys it.

The researchers get intraceptors inside cells by putting the manmade gene that makes them inside a carrier called a plasmid, an approach used in gene therapy and naturally by bacteria in the body to carry around extra genes.

Preliminary evidence indicates this technology can not only prevent blood vessel formation but also help eliminate existing blood vessels, Dr. Ambati says.

Much laboratory work remains before clinical trials are considered, he says. The researchers need to study the process in the retina, the target of abnormal blood vessel growth that occurs in the wet form of macular degeneration as well as diabetic retinopathy. He plans to do additional cancer studies and longer-term follow up the technology’s ability to forestall destructive new growth. Meanwhile, the MCG Office of Technology Transfer and Economic has obtained a provisional patent on the technology.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>