Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique appears to stop abnormal blood vessel growth

01.06.2005


A manmade protein with a tail of amino acids delivered to target cells can dramatically reduce blood vessel growth that obstructs vision or feeds a tumor, researchers have found.



This new approach to inhibiting blood vessel growth, or angiogenesis, delivers "intraceptors" that sequester VEGF, a "linchpin" protein needed to make blood vessels, says Dr. Balamurali K. Ambati, corneal specialist at the Medical College of Georgia and corresponding author on the study.

In a test tube as well as animal models for corneal injury and the deadly skin cancer, melanoma, MCG researchers have reduced destructive blood vessel proliferation by up to two-thirds. Findings are published in the May issue of Investigative Ophthalmology & Visual Science. "We have a promising new preclinical approach to treat conditions that involve blood vessel formation," says Dr. Ambati. These include corneal injury, the blinding wet form of macular degeneration, diabetic retinopathy and tumors, which need blood and oxygen to survive. Other angiogenesis inhibitors in use or under study target VEGF (vascular endothelial growth factor) after it has moved outside the cell, says Dr. Ambati, reducing new blood vessel growth by 30 percent to 50 percent.


"In theory, our approach works several steps ahead of where existing angiogenesis inhibitors work," he says. "The idea is that, hopefully, this would give you a therapeutic advantage by stopping VEGF where it’s produced. Scientists have found that several types of cells, including blood vessel cells and cancer cells, can make their own VEGF and receptor. If you have a junkie shooting up and making his own drug, you need to get inside him to break that cycle; getting his dealer is not enough. We have focused our research on attacking VEGF within cells. We want to break that autocrine loop," he says of the cell’s ability to supply itself with VEGF and a receptor.

To keep VEGF from ever leaving the protein factory where it’s made, MCG researchers created a gene that makes a version of Flt, a VEGF receptor identified nearly a decade ago, that has a tail of amino acids. The amino acid tail, a retention signal called KDEL, transforms Flt into a homing device and a death sentence for VEGF.

"It’s an arrest mechanism essentially," says Dr. Ambati. "It will bind and sequester. If you are VEGF and I am Flt-KDEL complex, I am going to grab you and keep you from leaving the room." If a protein spends too much time in the factory, called the endoplasmic reticulum, the cell destroys it.

The researchers get intraceptors inside cells by putting the manmade gene that makes them inside a carrier called a plasmid, an approach used in gene therapy and naturally by bacteria in the body to carry around extra genes.

Preliminary evidence indicates this technology can not only prevent blood vessel formation but also help eliminate existing blood vessels, Dr. Ambati says.

Much laboratory work remains before clinical trials are considered, he says. The researchers need to study the process in the retina, the target of abnormal blood vessel growth that occurs in the wet form of macular degeneration as well as diabetic retinopathy. He plans to do additional cancer studies and longer-term follow up the technology’s ability to forestall destructive new growth. Meanwhile, the MCG Office of Technology Transfer and Economic has obtained a provisional patent on the technology.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>