Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People with diabetes more sensitive to cardiovascular effects from air pollution

01.06.2005


People with diabetes may be at higher risk for cardiovascular problems when air pollution levels are higher, according to a new study of Boston-area residents. The ability of the blood vessels to control blood flow was impaired in adults with diabetes on days with elevated levels of particles from traffic and coal-burning power plants. The researchers evaluated several kinds of fine particles found in urban air pollution. These included sulfate particles, which come mainly from coal-burning power plants, as well as ultra-fine particles and black carbon soot, which are generated primarily by diesel- and gasoline-powered vehicles.

"Our strongest finding was that blood vessel reactivity was impaired in people with diabetes on days when concentrations of sulfate particles and black carbon were higher," said Marie O’Neill, Ph.D., an epidemiologist now with the Robert Wood Johnson Health & Society Scholars program at University of Michigan and lead author on the study. "Impaired vascular reactivity has been associated with an increased risk of heart attack, stroke and other heart problems."

"Previous studies have shown that when air pollution levels are higher, people with diabetes have higher rates of hospitalization and death related to cardiovascular problems," said NIEHS Director David Schwartz, M.D. "These changes in blood vessel reactivity may help explain this phenomenon."



The National Institute of Environmental Health Sciences, one of the National Institutes of Health, provided funding to O’Neill and other researchers at the Harvard School of Public Health for the study. Other collaborators were from the Joslin Diabetes Center and Beth Israel Deaconess Medical Center in Boston. The findings are published in the June 2005 issue of the journal Circulation.

"We don’t really understand why fine particles may cause this decrease in vascular reactivity," said O’Neill. "Further research is needed to confirm this association between air pollution and vascular health and to understand what causes people with diabetes to be especially sensitive."

Researchers recruited 270 greater Boston metropolitan residents and divided them into two groups. The first group consisted of subjects with a positive diagnosis of type I or type II diabetes. The second group included subjects who were not diabetic, but who had a family history of diabetes or blood sugar levels slightly higher than normal.

The investigators used a technique called brachial artery ultrasound to assess blood vessel response in the study subjects. The measurement was obtained by applying a pressure cuff to the subject’s upper arm and cutting off the blood flow through the arm’s main artery. Researchers then released the cuff, allowing the blood to rush through. The researchers then evaluated changes in the diameter of the main artery as a result of the physical stress placed on the vessel.

"We observed an 11 percent decrease in diabetics’ vascular reactivity on days when sulfate particle concentrations were higher than normal," said O’Neill. "We also noted a 13 percent decrease in their vascular reactivity on days with higher-than-normal black carbon concentrations."

"We hope our study will remind people that reducing air pollution is important for everyone’s health, but especially for vulnerable members of our population, including the elderly and people with chronic health problems such as diabetes," she said.

Diabetes is a metabolic disorder in which blood sugar levels are elevated because levels of insulin are too low. Insulin is the hormone needed to process sugars and starches into energy. Diabetes is widely recognized as one of the leading causes of death and disability in the United States, affecting some 13.3 million Americans. Research conducted in Montreal, Quebec from 1984 to 1993 showed that hospitalizations and deaths related to cardiovascular problems increased among diabetics when levels of air pollution were higher.

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>