Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People with diabetes more sensitive to cardiovascular effects from air pollution

01.06.2005


People with diabetes may be at higher risk for cardiovascular problems when air pollution levels are higher, according to a new study of Boston-area residents. The ability of the blood vessels to control blood flow was impaired in adults with diabetes on days with elevated levels of particles from traffic and coal-burning power plants. The researchers evaluated several kinds of fine particles found in urban air pollution. These included sulfate particles, which come mainly from coal-burning power plants, as well as ultra-fine particles and black carbon soot, which are generated primarily by diesel- and gasoline-powered vehicles.

"Our strongest finding was that blood vessel reactivity was impaired in people with diabetes on days when concentrations of sulfate particles and black carbon were higher," said Marie O’Neill, Ph.D., an epidemiologist now with the Robert Wood Johnson Health & Society Scholars program at University of Michigan and lead author on the study. "Impaired vascular reactivity has been associated with an increased risk of heart attack, stroke and other heart problems."

"Previous studies have shown that when air pollution levels are higher, people with diabetes have higher rates of hospitalization and death related to cardiovascular problems," said NIEHS Director David Schwartz, M.D. "These changes in blood vessel reactivity may help explain this phenomenon."



The National Institute of Environmental Health Sciences, one of the National Institutes of Health, provided funding to O’Neill and other researchers at the Harvard School of Public Health for the study. Other collaborators were from the Joslin Diabetes Center and Beth Israel Deaconess Medical Center in Boston. The findings are published in the June 2005 issue of the journal Circulation.

"We don’t really understand why fine particles may cause this decrease in vascular reactivity," said O’Neill. "Further research is needed to confirm this association between air pollution and vascular health and to understand what causes people with diabetes to be especially sensitive."

Researchers recruited 270 greater Boston metropolitan residents and divided them into two groups. The first group consisted of subjects with a positive diagnosis of type I or type II diabetes. The second group included subjects who were not diabetic, but who had a family history of diabetes or blood sugar levels slightly higher than normal.

The investigators used a technique called brachial artery ultrasound to assess blood vessel response in the study subjects. The measurement was obtained by applying a pressure cuff to the subject’s upper arm and cutting off the blood flow through the arm’s main artery. Researchers then released the cuff, allowing the blood to rush through. The researchers then evaluated changes in the diameter of the main artery as a result of the physical stress placed on the vessel.

"We observed an 11 percent decrease in diabetics’ vascular reactivity on days when sulfate particle concentrations were higher than normal," said O’Neill. "We also noted a 13 percent decrease in their vascular reactivity on days with higher-than-normal black carbon concentrations."

"We hope our study will remind people that reducing air pollution is important for everyone’s health, but especially for vulnerable members of our population, including the elderly and people with chronic health problems such as diabetes," she said.

Diabetes is a metabolic disorder in which blood sugar levels are elevated because levels of insulin are too low. Insulin is the hormone needed to process sugars and starches into energy. Diabetes is widely recognized as one of the leading causes of death and disability in the United States, affecting some 13.3 million Americans. Research conducted in Montreal, Quebec from 1984 to 1993 showed that hospitalizations and deaths related to cardiovascular problems increased among diabetics when levels of air pollution were higher.

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>