Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


People with diabetes more sensitive to cardiovascular effects from air pollution


People with diabetes may be at higher risk for cardiovascular problems when air pollution levels are higher, according to a new study of Boston-area residents. The ability of the blood vessels to control blood flow was impaired in adults with diabetes on days with elevated levels of particles from traffic and coal-burning power plants. The researchers evaluated several kinds of fine particles found in urban air pollution. These included sulfate particles, which come mainly from coal-burning power plants, as well as ultra-fine particles and black carbon soot, which are generated primarily by diesel- and gasoline-powered vehicles.

"Our strongest finding was that blood vessel reactivity was impaired in people with diabetes on days when concentrations of sulfate particles and black carbon were higher," said Marie O’Neill, Ph.D., an epidemiologist now with the Robert Wood Johnson Health & Society Scholars program at University of Michigan and lead author on the study. "Impaired vascular reactivity has been associated with an increased risk of heart attack, stroke and other heart problems."

"Previous studies have shown that when air pollution levels are higher, people with diabetes have higher rates of hospitalization and death related to cardiovascular problems," said NIEHS Director David Schwartz, M.D. "These changes in blood vessel reactivity may help explain this phenomenon."

The National Institute of Environmental Health Sciences, one of the National Institutes of Health, provided funding to O’Neill and other researchers at the Harvard School of Public Health for the study. Other collaborators were from the Joslin Diabetes Center and Beth Israel Deaconess Medical Center in Boston. The findings are published in the June 2005 issue of the journal Circulation.

"We don’t really understand why fine particles may cause this decrease in vascular reactivity," said O’Neill. "Further research is needed to confirm this association between air pollution and vascular health and to understand what causes people with diabetes to be especially sensitive."

Researchers recruited 270 greater Boston metropolitan residents and divided them into two groups. The first group consisted of subjects with a positive diagnosis of type I or type II diabetes. The second group included subjects who were not diabetic, but who had a family history of diabetes or blood sugar levels slightly higher than normal.

The investigators used a technique called brachial artery ultrasound to assess blood vessel response in the study subjects. The measurement was obtained by applying a pressure cuff to the subject’s upper arm and cutting off the blood flow through the arm’s main artery. Researchers then released the cuff, allowing the blood to rush through. The researchers then evaluated changes in the diameter of the main artery as a result of the physical stress placed on the vessel.

"We observed an 11 percent decrease in diabetics’ vascular reactivity on days when sulfate particle concentrations were higher than normal," said O’Neill. "We also noted a 13 percent decrease in their vascular reactivity on days with higher-than-normal black carbon concentrations."

"We hope our study will remind people that reducing air pollution is important for everyone’s health, but especially for vulnerable members of our population, including the elderly and people with chronic health problems such as diabetes," she said.

Diabetes is a metabolic disorder in which blood sugar levels are elevated because levels of insulin are too low. Insulin is the hormone needed to process sugars and starches into energy. Diabetes is widely recognized as one of the leading causes of death and disability in the United States, affecting some 13.3 million Americans. Research conducted in Montreal, Quebec from 1984 to 1993 showed that hospitalizations and deaths related to cardiovascular problems increased among diabetics when levels of air pollution were higher.

John Peterson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>