Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydroxycitric acid slows glucose uptake, cuts insulin peaks/valleys a la South Beach Diet

19.05.2005


Leveling insulin/sugar effect could point to therapeutic role in diabetes



In this obesity-obsessed world, the dream ingredient must be something that tastes good enough to be a condiment or flavoring and yet somehow helps us keep our weight down. Consider hydroxycitric acid (HCA), known variously as Brindle berry or Malabar tamarind, which is used in Indian and Thai food as a condiment and flavoring agent.

In Indian folk medicine as a dried powder or tea it’s indicated as a laxative and for rheumatism. As Malabar tamarind, it can substitute for lime, and in Ceylon it’s used along with salt to cure fish.


For HCA, though, the other half of the taste-benefit formula is much less clear. Animal studies suggest HCA may reduce food intake followed by weight loss, but no controlled human trials have shown either effect. Nevertheless, many people seem to believe HCA will help them lose weight. It’s sold by vitamin and other specialty shops as Citrimax or Citrin, and is a featured ingredient in such dietetic aids as Herbalife’s "Snack Defense" tablets.

A group of Dutch researchers went back to basics and studied how and if HCA affects glucose absorption, a key component of metabolism. The study, entitled "Hydroxycitric acid delays intestinal glucose absorption in rats," appears online and in the June issue of the American Journal of Physiology-Gastrointestinal and Liver Physiology, published by the American Physiological Society. The research was conducted by Peter Y. Wielinga, Renate E. Wachters-Hagedoorn, Brenda Bouter, Theo H. van Dijk, Frans Stellaard, Arie G. Nieuwenhuizen, Henkjan J. Verkade, and Anton J.W. Scheurink.

HCA strongly delays post-meal glucose levels, reducing insulin output

In the study, rats were administered HCA prior to "mimicking a meal by infusing sugar into the stomach," explained lead author Wielinga. "Compared with controls, which had no HCA, the test rats’ rise in blood sugar was much slower, but over 2 ½ hours all the sugar was absorbed."

In addition, "HCA strongly attenuated postprandial (after-meal) blood glucose levels after both intragastric (or IG, into the stomach, at P < 0.01) and intraduodenal (or ID, into the small intestine, at P < 0.001) glucose administration" which also excluded the possibility of "a major effect of HCA on gastric emptying," the paper stated. "These data support a possible role for HCA as a food supplement in lowering postprandial glucose profiles," it said.

Wielinga said that the absorption delay was significant because "sugar that is normally absorbed rather quickly -- within about 20 minutes -- took over 2 hours after HCA ingestion. This delay is good because it reduces the high peaks of glucose, which otherwise would require the body to produce a lot of insulin to deal with the ’meal.’

"Finding this delayed absorption is a completely new phenomenon and one that might be useful to follow up: why is it delayed and how might this affect humans?" Wielinga reported. But he warned that "we don’t know how this will translate into humans. Care must be taken because the comparable dosage we use in rats is probably way too high for humans," he added.

The ’South Beach’ inference; speculation about HCA’s potential in diabetes

One of the tenets of the successful "South Beach Diet" is to reduce and slow sugar absorption. In his first book, Dr. Arthur Agatston explains: "What we’re concerned with here is the speed with which our bodies get at the sugars….If the body experiences a fast infusion of sugars, a lot of insulin is required. If the sugars are metabolized more slowly, the insulin is released gradually. This is a crucial difference, as far as obesity is concerned: Fast sugar is worse for you; slower is better."

Besides the implication for extra sugar being stored (as fat) rather being used effectively, Dr. Agatston notes that with large sugar infusions, the body often produces too much insulin, which then lowers the blood sugar level. When that happens, he writes, "new cravings are created, requiring more quick carbohydrate fixes."

Next steps

Wielinga again warned that any comparison between rats and humans regarding HCA have to be treated very carefully. However, he said now that it is known where HCA has an effect in rats, the next step is to try and uncover its mechanism. He said that "if we can reduce the peaks and valleys of insulin with HCA, then it might have some application in diabetes, both in slowing progression to diabetes 2 and since these people have an obesity problem, it could potentially have an additional benefit in the therapeutic field. But this is all highly speculative," Wielinga added.

Wielinga, who is moving to the Institute of Veterinary Physiology at the University of Zurich, Switzerland, said another promising area "we plan to study is HCA’s affect on food intake reduction, since it is known that HCA seems to reduce some food intake in rodents."

Mayer Resnick | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>