Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy by the numbers

18.05.2005


New brain monitoring method would pinpoint babies at risk for seizures

Confusion and speech problems are frequent signs of seizures, but babies offer few such clues as to what ails them. Now scientists at the Evelyn F. and William L. McKnight Brain Institute of the University of Florida report they have found a mathematical way to translate complicated brain wave readings into simple terms to help doctors and nurses more easily identify babies at risk for epilepsy. Epilepsy describes a group of disorders that occur when bursts of electrical activity in the brain cause seizures. It strikes more than 2 million people in the United States, according to the National Institute of Neurological Diseases and Stroke. Newborn children have the highest risk of seizures, according to the National Society for Epilepsy, because of immature brain development.

But it is difficult to tell whether babies are epileptic because they are often asleep. Even when awake, they cannot provide clues through their speech, nor do abnormal movements necessarily indicate a seizure. One way for doctors to be certain whether a newborn is having a seizure is through a diagnostic test called an electroencephalogram, or EEG, which monitors electrical activity through electrodes placed on a patient’s scalp. But the test is expensive, requires a high level of training to interpret and often isn’t readily available in hospitals.



"An EEG provides a squiggly line readout of brain activity," said Dr. Paul Carney, chief of pediatric neurology at UF’s College of Medicine and a professor at the B.J. and Eve Wilder Center for Excellence in Epilepsy Research at the McKnight Brain Institute. "Our goal is to take our findings and develop a tool that can run in real time right next to the blood pressure and other monitoring devices in a hospital. If successful it would be one of the first brain function monitors for clinical use in the neonatal intensive care unit."

UF researchers presenting today (5-17) at the annual meeting of the Pediatric Academic Societies in Washington, D.C., say they can convert an EEG readout into a quantitative value. For example, a reading of "20" would indicate normal brain activity and a reading of "10" would indicate a seizure.

They tested their idea by reviewing the EEGs of 35 babies up to a month old, 23 of whom had normal brain function. They were able to pinpoint the newborns at risk for seizures through differences in key statistical values of brain activity. "An experienced pediatric neurologist and electroencephalographer could certainly distinguish abnormal from normal newborns by reviewing their EEGs," said Deng-Shan Shiau, an assistant research neuroscientist at UF’s Brain Dynamics Laboratory. "However, from my understanding, for abnormal neonates with lower degrees of severity, abnormal EEG patterns may only be obvious in a few segments in the entire recording. Quantitative EEG analysis may help doctors quickly identify these segments and determine if a neonate is normal."

The researchers and UF have applied for a patent for the technology. Work thus far has been funded through the American Epilepsy Society and the Epilepsy Foundation.

"Looking at electrical signaling in the newborn brain is very important," said Dr. Gregory Holmes, chief of neurology at Dartmouth Medical School and president-elect of the American Epilepsy Society. "If there are abnormal patterns of brain activity early in life, the brain is not going to wire correctly, and that’s going to stay with these children for the rest of their lives. Detecting these patterns and intervening will be very powerful."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>