Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy by the numbers

18.05.2005


New brain monitoring method would pinpoint babies at risk for seizures

Confusion and speech problems are frequent signs of seizures, but babies offer few such clues as to what ails them. Now scientists at the Evelyn F. and William L. McKnight Brain Institute of the University of Florida report they have found a mathematical way to translate complicated brain wave readings into simple terms to help doctors and nurses more easily identify babies at risk for epilepsy. Epilepsy describes a group of disorders that occur when bursts of electrical activity in the brain cause seizures. It strikes more than 2 million people in the United States, according to the National Institute of Neurological Diseases and Stroke. Newborn children have the highest risk of seizures, according to the National Society for Epilepsy, because of immature brain development.

But it is difficult to tell whether babies are epileptic because they are often asleep. Even when awake, they cannot provide clues through their speech, nor do abnormal movements necessarily indicate a seizure. One way for doctors to be certain whether a newborn is having a seizure is through a diagnostic test called an electroencephalogram, or EEG, which monitors electrical activity through electrodes placed on a patient’s scalp. But the test is expensive, requires a high level of training to interpret and often isn’t readily available in hospitals.



"An EEG provides a squiggly line readout of brain activity," said Dr. Paul Carney, chief of pediatric neurology at UF’s College of Medicine and a professor at the B.J. and Eve Wilder Center for Excellence in Epilepsy Research at the McKnight Brain Institute. "Our goal is to take our findings and develop a tool that can run in real time right next to the blood pressure and other monitoring devices in a hospital. If successful it would be one of the first brain function monitors for clinical use in the neonatal intensive care unit."

UF researchers presenting today (5-17) at the annual meeting of the Pediatric Academic Societies in Washington, D.C., say they can convert an EEG readout into a quantitative value. For example, a reading of "20" would indicate normal brain activity and a reading of "10" would indicate a seizure.

They tested their idea by reviewing the EEGs of 35 babies up to a month old, 23 of whom had normal brain function. They were able to pinpoint the newborns at risk for seizures through differences in key statistical values of brain activity. "An experienced pediatric neurologist and electroencephalographer could certainly distinguish abnormal from normal newborns by reviewing their EEGs," said Deng-Shan Shiau, an assistant research neuroscientist at UF’s Brain Dynamics Laboratory. "However, from my understanding, for abnormal neonates with lower degrees of severity, abnormal EEG patterns may only be obvious in a few segments in the entire recording. Quantitative EEG analysis may help doctors quickly identify these segments and determine if a neonate is normal."

The researchers and UF have applied for a patent for the technology. Work thus far has been funded through the American Epilepsy Society and the Epilepsy Foundation.

"Looking at electrical signaling in the newborn brain is very important," said Dr. Gregory Holmes, chief of neurology at Dartmouth Medical School and president-elect of the American Epilepsy Society. "If there are abnormal patterns of brain activity early in life, the brain is not going to wire correctly, and that’s going to stay with these children for the rest of their lives. Detecting these patterns and intervening will be very powerful."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>