Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek methods to make new cancer therapies available more quickly

18.05.2005


Latest findings indicate one- and two-year study results not as predictive as longer-term studies



In their efforts to explore more effective and efficient ways to conduct clinical trials, Mayo Clinic cancer researchers will present new recommendations about how long studies should track results when evaluating new cancer therapies. An analysis led by Daniel Sargent, Ph.D., director of statistics for Mayo Clinic Cancer Center, shows that many study results garnered after three years are just as reliable as those produced after five years. But, data provided after two years of study are less precise, and those provided after only one year are not sufficiently reliable.

Dr. Sargent will present these results on May 17, during the 2005 American Society of Clinical Oncology (ASCO) Annual Meeting in Orlando, Fla. Dr. Sargent is one of the founders of the Adjuvant Colon Cancer Endpoints (ACCENT) Group that is studying whether there are ways to make results of clinical trials in oncology available more quickly, to provide effective treatments to patients faster.


"We found last year that outcomes after three years were highly predictive of the five-year outcomes, so we went back and asked ’could we look after one year or two years,’ " says Dr. Sargent. "Our new results suggest that two years is almost as good as three years, but that one year is too early."

Last year, Dr. Sargent presented his results on colon cancer therapies to the Food and Drug Administration (FDA), which agreed with his conclusions, and allowed three years of follow-up study to be part of the evidence in considering new drug therapies for colon cancer treatment. In the past, five years of follow-up had been required before results were considered definitive.

The recommendations from the study presented at the 2005 ASCO conference were based on the study of individual patient data from 20,898 patients and 18 randomized trials.

ACCENT is an international collaboration involving researchers throughout Europe, Canada and the United States. Dr. Sargent helped found the group about a year and a half ago to focus efforts on studies involving colon cancer. As ACCENT continues its work, it may broaden its focus to include other cancers, he said.

"We were dissatisfied with how long it takes to complete trials and make promising new therapies available to help patients," says Dr. Sargent. "Our goal was to see if there was a better and more efficient way to conduct the trials."

Dr. Sargent says the research is not perfect, and some therapies yield different results at three years than they do at five years. "We are committed to following patients for long-term outcomes, and if the results change with this further follow-up, we could modify treatment," he says. "The long-term health of the patient is still the ultimate goal."

DISCLOSURE: This study was funded by the National Cancer Institute (NCI) and coordinated by the North Central Cancer Treatment Group (NCCTG), a national clinical research group sponsored by the NCI. NCCTG is a network of more than 400 community-based cancer treatment clinics in the United States, Canada and Mexico that work with Mayo Clinic to conduct clinical studies for advancing cancer treatment.

Lee Aase | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>