Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Latest generation lineal accelerator for radiotherapy

18.05.2005


The Cancer Department at the la University of Navarra University Hospital has acquired a Siemens, latest-generation lineal accelerator. This is the first centre in Spain to install this advanced radiotherapy apparatus which is equipped with multilaminas, minimultilaminas and portal vision.



The new radiotherapy equipment has the Moduleaf system as an extra feature minilaminas of 2.5 mm – the thinnest that currently exists in this technology - that can shape irregular parts of tumours with much greater precision. To date laminas of 1 cm have been used, in which the dosimetric yield is less precise in the case of small lesions. The new system enables the application of very exact and precisely-adapted treatment such as radiosurgery, radiotherapy stereotactics or radiotherapy with modulated intensity.

Modulated intensity


A lineal accelerator is a device that enables the treatment of malignant tumours by means of the emission of radiations. At present, the equipment shapes or moulds the radiation field through a system of multilaminas that are indispensable in order to carry out this shaping of the radiation beam. This beam modulation enables the adaptation of the radiation dose to the anatomy of the desired volumes of tissue, whereby the radiation of healthy organs is diminished at the same time as that of affected tissue increased. With the minimultilaminas we can modulate the beam intensity at smaller volumes of tissue, thus enabling a greater number of appplications.

Uses

The latest-generation lineal accelerator installed at the University Hospital, apart from treating any kind of tumorous zone, is especially useful for the treatment of brain tumours that are small and of irregular shape, both benign and malignant, as well as cerebral functional pathology. This is why they are studying putting into operation a protocol for the treatment of certain cerebral functional lesions, such as certain cases of epilepsy. Moreover, it is seen as a therapeutic alternative to selected lung cancers, spinal tumours close to spinal cord, tumours at the base of the cranium and as consolidation of oligometastasis at the level of the liver, retroperitoneum, lung, etc.

Moreover, the new accelerator is capable, by means of its portal vision, of comparing with precision the radiation field in real time with the computer-designed one and, in this way, in situ corrections for deviations in the positioning of the patient can be carried out or, as the case may be, for the movements in the organ itself where the tumour, which can vary from day to day and, finally, for changes in the size of the tumour as a response to the treatment.

This is what is known as image-guided radiotherapy (IGRT) or adapted radiotherapy.

Finally, it enables the carrying out of conventional treatment - tridimensional and modulated radiotherapy with conventional laminas, thus being complementary to the rest of the cutting edge technology equipment in the cancer department.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>