Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood test for ovarian cancer screening

10.05.2005


A new blood screening test could help to identify ovarian cancer in its early stages when few symptoms are present, Yale School of Medicine researchers report in the May 10 issue of Proceedings of the National Academies of Sciences (PNAS).



Epithelial ovarian cancer is the leading cause of gynecologic cancer deaths in the United States and three times more lethal than breast cancer. It is usually not diagnosed until its advanced stages and has come to be known as the "silent killer."

"Early diagnosis can help prolong or save lives, but clinicians currently have no sensitive screening method because the disease shows few symptoms," said the study’s lead author Gil Mor, M.D., associate professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale School of Medicine. Mor is also affiliated with the Yale Cancer Center.


Mor conducted the research with David Ward, deputy director of the Nevada Cancer Institute. They developed and tested a new blood test for ovarian cancer based on four proteins: leptin, prolactin, osteopontin and insulin-like growth factor-II. If the level of two or more of these biomarkers for a patient falls within a certain warning area, the test will predict that she has cancer. In a test group of over 200 ovarian cancer patients and healthy women, the test showed 95 percent sensitivity (fraction correctly diagnosed with cancer) and 95 percent specificity (fraction correctly diagnosed as cancer-free).

Each of the proteins had been previously suggested as a good cancer biomarker, though not as a set. In this study, no single protein could completely distinguish the cancer patients from the healthy controls.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>