Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green laser pointer can cause eye damage

10.05.2005


Mayo Clinic ophthalmologists have found commercially available Class 3A green laser pointers can cause visible harm to the eye’s retina with exposures as short as 60 seconds. The findings will be published in the May issue of Archives of Ophthalmology.



Dennis Robertson, M.D., Mayo Clinic ophthalmologist, conducted investigations with a green laser pointer directed to the retina of a patient’s eye; the eye was scheduled for removal because of a malignancy. The green laser damaged the pigment layer of the retina, although it did not cause a measurable decrease in the visual function of the patient’s eye. Dr. Robertson believes that longer exposures could harm vision, however. He also warns about potential damage from higher-powered green laser pointers. "With the use of laser pointers that are more powerful than five milliwatts, there would likely be damage to the actual vision," he says. "Functional damage could occur within seconds."

Dr. Robertson does not advocate against use of green laser pointers; rather, he advocates against their misuse. "Green laser pointers are not a public health hazard at this time, but something people should be aware of," he says. "I’m raising concerns that people should be cautious when using green laser pointers not to point them at someone’s eye or face. It’s like how you use your knife -- carefully." While pointing out risks of green laser pointers, he adds, "This is a potential hazard to people’s eyes, but rarely is it going to be a practical hazard because the aversion reflex we have naturally will cause a person to blink or turn away from a laser light."


Green laser pointers are readily available in stores and on the Internet, according to Dr. Robertson. "Kids can buy these," he says. "They’re not strictly regulated." He adds that Class 3A green laser pointers are increasingly being used by amateur astronomers to pinpoint objects in the night sky and by the construction industry and architecture educators to point out details of structures in daylight. Dr. Robertson conducted the eye exposure test with a consenting patient two weeks before eye removal due to ring melanoma. The patient’s vision was 20/20, and the macular retina appeared healthy.

Dr. Robertson exposed the patient’s retina to light from a commercially available Class 3A green laser with an average power measured at less than five milliwatts: 60 seconds to the fovea, the center of acute vision; five minutes to a site 5 degrees below the fovea; and 15 minutes to a site 5 degrees above the fovea. Dr. Robertson had color photographs taken of the eye before and after exposure to the laser.

Dr. Robertson examined the patient’s eye 24 hours after laser exposure. He found retinal damage characterized by yellowish discoloration involving the pigment layer beneath the fovea and at the site of the 15-minute exposure above the fovea. Each of these sites developed a grainy texture within six days. Study of the eye tissue under a microscope also confirmed damage to the pigment layer in the laser-exposed regions.

Dr. Robertson has been interested in the effects of lights on the human eye during his career, testing operating room microscopes, lights used in the clinic, red laser pointers and now green laser pointers.

Previously, he determined red laser pointers to be quite safe. "I tested different powers up to five milliwatts and could not create recognizable damage in the human eye with the red laser pointers," he explains. "So, at least a transient exposure to red laser pointers’ light is only of trivial concern."

Dr. Robertson attributes the risk differential between red and green lasers to wavelength. "We know that the retina is infinitely more sensitive to shorter wavelengths," he says. "The green lasers appear much brighter to the human eye because of the shorter wavelength and can cause damage." Dr. Robertson says Mayo Clinic’s investigations have clearly demonstrated that green laser pointers can cause irreversible damage to the pigment layer of the retina.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu
http://archopht.ama-assn.org

More articles from Health and Medicine:

nachricht Real-time imaging of lung lesions during surgery helps localize tumors and improve precision
30.07.2015 | American Association for Thoracic Surgery

nachricht Experimental MERS vaccine shows promise in animal studies
29.07.2015 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>