Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers team with Kinetic Muscles, Inc. to develop robotic arm for stroke rehabilitation

06.05.2005


Arizona State University researchers and Tempe-based Kinetic Muscles, Inc., have developed a robotic arm to help stroke survivors regain the ability to perform basic tasks, such as reaching for objects or feeding themselves. The rehabilitative device aids in task-oriented repetitive therapy, and the hope is that it will provide a cost-effective alternative to traditional therapy. This would enable a wider population to regain maximum motor function.

The research team is led by Jiping He, Ph.D., of the Biodesign Institute at Arizona State University. Dr. He* directs the Institute’s Center for Neural Interface Design and is a professor of bioengineering at ASU’s Fulton School of Engineering. Dr. He will present a paper on the design and evaluation of the robotic arm this summer at the 9th International Conference on Rehabilitation Robotics in Chicago on June 28-July 1.

Dubbed "RUPERT," for Robotic Upper Extremity Repetitive Therapy, Kinetic Muscles, Inc. is producing the prototypes for the project, which is funded by the National Institutes of Health. Kinetic Muscles currently has a device for hand rehabilitation in stroke survivors on the market.



There are two key benefit phases for stroke victims in the project development timetable, according to Dr. He. Currently, the device is able to mimic a fluid, natural extension of the arm using pneumatic muscles and can be programmed for repetitive exercises specific to the user that improve arm and hand flexibility and strength.

The team is now working to engineer greater intelligence into the device so that it responds directly to a user’s intent. "We want RUPERT to be able to sense when the user is attempting to reach for something, and to automatically assist their volitional movement." said Dr. He. "Not only is the goal to make the motion more intuitive, but we want the robot to assist at those points in the movement where the individual needs it," said He. As the individual’s motor function improved, RUPERT would adapt to allow the user faster recovery by requiring the muscles to work independently where possible.

The first RUPERT prototype was fitted and tested on able-bodied individuals and stroke survivors at Banner Good Samaritan Regional Medical Center in Phoenix. Eight able-bodied individuals tried on RUPERT I to see how well it could be adjusted to fit each in each case. The testers ranged from 5-foot females to over-6-foot males. In addition, two stroke survivors completed a three-week course of therapy using the device. RUPERT II, a second generation prototype, is under development using results of the fitting evaluations and therapy testing at the medical center.

RUPERT I and II are powered by four pneumatic muscles to assist movement at the shoulder, elbow and wrist. The design was based on a kinematics model of the arm, which showed where to locate the pneumatic muscles and how much force was needed for normal reaching and feeding movements. The mechanical arm is adjustable to accommodate different arm lengths and body sizes.

Recent research suggests that stroke survivors can recover significant use of their arms by performing repetitive motor function exercises over a period of time. This labor-intensive physical therapy is expensive, however, claiming up to 4 percent of the national health budget, according to the National Institutes of Health. Moreover, health insurers may limit or deny coverage before stroke survivors achieve best results, Dr. He said. The availability of a device like RUPERT, that could be used at home with greater frequency and for a longer period of time, may prove to be a more cost-effective approach that would provide better results.

Kimberly Ovitt | EurekAlert!
Further information:
http://www.asu.edu
http://www.biodesign.asu.edu
http://www.fulton.asu.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>