Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers team with Kinetic Muscles, Inc. to develop robotic arm for stroke rehabilitation

06.05.2005


Arizona State University researchers and Tempe-based Kinetic Muscles, Inc., have developed a robotic arm to help stroke survivors regain the ability to perform basic tasks, such as reaching for objects or feeding themselves. The rehabilitative device aids in task-oriented repetitive therapy, and the hope is that it will provide a cost-effective alternative to traditional therapy. This would enable a wider population to regain maximum motor function.

The research team is led by Jiping He, Ph.D., of the Biodesign Institute at Arizona State University. Dr. He* directs the Institute’s Center for Neural Interface Design and is a professor of bioengineering at ASU’s Fulton School of Engineering. Dr. He will present a paper on the design and evaluation of the robotic arm this summer at the 9th International Conference on Rehabilitation Robotics in Chicago on June 28-July 1.

Dubbed "RUPERT," for Robotic Upper Extremity Repetitive Therapy, Kinetic Muscles, Inc. is producing the prototypes for the project, which is funded by the National Institutes of Health. Kinetic Muscles currently has a device for hand rehabilitation in stroke survivors on the market.



There are two key benefit phases for stroke victims in the project development timetable, according to Dr. He. Currently, the device is able to mimic a fluid, natural extension of the arm using pneumatic muscles and can be programmed for repetitive exercises specific to the user that improve arm and hand flexibility and strength.

The team is now working to engineer greater intelligence into the device so that it responds directly to a user’s intent. "We want RUPERT to be able to sense when the user is attempting to reach for something, and to automatically assist their volitional movement." said Dr. He. "Not only is the goal to make the motion more intuitive, but we want the robot to assist at those points in the movement where the individual needs it," said He. As the individual’s motor function improved, RUPERT would adapt to allow the user faster recovery by requiring the muscles to work independently where possible.

The first RUPERT prototype was fitted and tested on able-bodied individuals and stroke survivors at Banner Good Samaritan Regional Medical Center in Phoenix. Eight able-bodied individuals tried on RUPERT I to see how well it could be adjusted to fit each in each case. The testers ranged from 5-foot females to over-6-foot males. In addition, two stroke survivors completed a three-week course of therapy using the device. RUPERT II, a second generation prototype, is under development using results of the fitting evaluations and therapy testing at the medical center.

RUPERT I and II are powered by four pneumatic muscles to assist movement at the shoulder, elbow and wrist. The design was based on a kinematics model of the arm, which showed where to locate the pneumatic muscles and how much force was needed for normal reaching and feeding movements. The mechanical arm is adjustable to accommodate different arm lengths and body sizes.

Recent research suggests that stroke survivors can recover significant use of their arms by performing repetitive motor function exercises over a period of time. This labor-intensive physical therapy is expensive, however, claiming up to 4 percent of the national health budget, according to the National Institutes of Health. Moreover, health insurers may limit or deny coverage before stroke survivors achieve best results, Dr. He said. The availability of a device like RUPERT, that could be used at home with greater frequency and for a longer period of time, may prove to be a more cost-effective approach that would provide better results.

Kimberly Ovitt | EurekAlert!
Further information:
http://www.asu.edu
http://www.biodesign.asu.edu
http://www.fulton.asu.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>