Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI eye doctors invent laser-assisted cornea-transplant surgery

04.05.2005


New technique can replace handheld blades and speed recovery time



A UC Irvine ophthalmologist and his team have invented a new laser-surgery technique to perform cornea-transplant surgery that can replace the use of traditional handheld surgical blades and potentially improve recovery time for patients.

The technique was developed by Dr. Roger F. Steinert, director of cornea, refractive and cataract surgery in UCI Health Sciences. Cornea transplants are performed on the “front window” of the eye, using living tissue from donors to replace corneas in which swelling, scars, distortions and degenerations are causing blindness. The work will be presented today at the Association for Research in Vision and Ophthalmology meeting, the largest eye research meeting in the world, in Fort Lauderdale, Fla.


The work will lead to human application of the high-tech procedure. Clinical trials are expected to begin by this summer at UCI.

While most transplants are successful in providing the patient with a clear cornea, the majority of cornea transplants take more than six months to provide good vision, and even then strong glasses or contact lenses are needed. In addition, stitches usually need to stay in place for years, because the cornea is slow to heal and, as a result, the transplant remains a weak spot, vulnerable to injury for the rest of the patient’s life. After the laser-based transplant, suture removal may be as soon as three months, and the strength of the repaired area may be nearly 10 times that of conventional transplants.

“By using the laser, a highly precise incision is created, resulting in a perfect match of the donor and the patient,” said Steinert, a professor of ophthalmology in the School of Medicine. “In addition to precision that exceeds anything that can be duplicated by even a highly skilled surgeon, the laser can create complex shapes that are impossible to achieve with conventional surgery.”

The study compared the results of conventional transplant surgical techniques to the results of the laser surgery. Utilizing 14 donated human corneas that were not medically suitable for transplantation, Steinert and his team performed simulated transplant surgery and then tested for the mechanical strength of the incisions and for induced distortion.

They found that the initial strength of the laser incision, even before any healing, measured almost seven times higher than that of the incision from the usual transplant technique performed by hand.

The laser used to cut the cornea is known as a femtosecond-pulsed laser, manufactured by Irvine-based IntraLase Corp. The laser fires 15,000 pulses per second, each pulse lasting only 400 quadrillionths of a second. (To understand how brief each laser pulse lasts, in one second a pulse of light would travel around the equator of the Earth seven times, but in one femtosecond a pulse of laser travels only the width of three human hairs.)

The location of the pulses in the cornea to create the incision is controlled by sophisticated optics and a computer, so that each pulse interconnects with the next, similar to the perforations in paper sheets that allow the paper to be torn cleanly.

As many as 40,000 cornea transplants are performed each year in the United States. The most common reasons for this procedure are swelling, clouding after damage from other eye diseases – a distortion known as keratoconus – and scarring after injuries or infections.

Co-workers on this project included Dr. Ronald Kurtz, associate professor of ophthalmology at UCI and co-inventor of the laser; Dr. Melvin Sarayba, project director at IntraLase, and Dr. Theresa Ignacio, a UCI research fellow. Steinert also is a professor of biomedical engineering and vice chair of clinical ophthalmology at UCI.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>