Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI eye doctors invent laser-assisted cornea-transplant surgery

04.05.2005


New technique can replace handheld blades and speed recovery time



A UC Irvine ophthalmologist and his team have invented a new laser-surgery technique to perform cornea-transplant surgery that can replace the use of traditional handheld surgical blades and potentially improve recovery time for patients.

The technique was developed by Dr. Roger F. Steinert, director of cornea, refractive and cataract surgery in UCI Health Sciences. Cornea transplants are performed on the “front window” of the eye, using living tissue from donors to replace corneas in which swelling, scars, distortions and degenerations are causing blindness. The work will be presented today at the Association for Research in Vision and Ophthalmology meeting, the largest eye research meeting in the world, in Fort Lauderdale, Fla.


The work will lead to human application of the high-tech procedure. Clinical trials are expected to begin by this summer at UCI.

While most transplants are successful in providing the patient with a clear cornea, the majority of cornea transplants take more than six months to provide good vision, and even then strong glasses or contact lenses are needed. In addition, stitches usually need to stay in place for years, because the cornea is slow to heal and, as a result, the transplant remains a weak spot, vulnerable to injury for the rest of the patient’s life. After the laser-based transplant, suture removal may be as soon as three months, and the strength of the repaired area may be nearly 10 times that of conventional transplants.

“By using the laser, a highly precise incision is created, resulting in a perfect match of the donor and the patient,” said Steinert, a professor of ophthalmology in the School of Medicine. “In addition to precision that exceeds anything that can be duplicated by even a highly skilled surgeon, the laser can create complex shapes that are impossible to achieve with conventional surgery.”

The study compared the results of conventional transplant surgical techniques to the results of the laser surgery. Utilizing 14 donated human corneas that were not medically suitable for transplantation, Steinert and his team performed simulated transplant surgery and then tested for the mechanical strength of the incisions and for induced distortion.

They found that the initial strength of the laser incision, even before any healing, measured almost seven times higher than that of the incision from the usual transplant technique performed by hand.

The laser used to cut the cornea is known as a femtosecond-pulsed laser, manufactured by Irvine-based IntraLase Corp. The laser fires 15,000 pulses per second, each pulse lasting only 400 quadrillionths of a second. (To understand how brief each laser pulse lasts, in one second a pulse of light would travel around the equator of the Earth seven times, but in one femtosecond a pulse of laser travels only the width of three human hairs.)

The location of the pulses in the cornea to create the incision is controlled by sophisticated optics and a computer, so that each pulse interconnects with the next, similar to the perforations in paper sheets that allow the paper to be torn cleanly.

As many as 40,000 cornea transplants are performed each year in the United States. The most common reasons for this procedure are swelling, clouding after damage from other eye diseases – a distortion known as keratoconus – and scarring after injuries or infections.

Co-workers on this project included Dr. Ronald Kurtz, associate professor of ophthalmology at UCI and co-inventor of the laser; Dr. Melvin Sarayba, project director at IntraLase, and Dr. Theresa Ignacio, a UCI research fellow. Steinert also is a professor of biomedical engineering and vice chair of clinical ophthalmology at UCI.

About the University of California, Irvine: Celebrating 40 years of innovation, the University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>