Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny endoscopes bring medical costs down


Viewing actual images of patients’ internal organs is more and more common in medical procedures. However, in many cases the treatment can be painful or uncomfortable, and high sterilisation costs can limit the procedure’s use. IVP’s prototypes aim to overcome such challenges.

With the IST project IVP finishing in September 2005, the project partners have developed two key prototypes; a new, smaller wired endoscope (called IVP1), and a tiny wireless-imaging probe taken in the form of a pill (IVP2). Both prototypes are equipped with illumination optics as well as mechanical components for swivelling the inbuilt image sensor. Project coordinator Christine Harendt of the Stuttgart Institute for Microelectronics explains further.

“We now have IVP1 ready – a wired prototype which we believe is currently the world’s smallest endoscope. The head is 3.5 millimetres in diameter, about the size of a match head. The image sensor itself is a typical CMOS chip measuring 2.7 by 2.3 millimetres. The great advantage of our prototype is the fact that the image sensor is incorporated into the head of the endoscope, which provides much better images for the surgeon.”

Harendt explains that existing endoscope heads, with the image sensor integrated into the head, are usually about twice this size. Other types with the image sensor set back from the head of the probe tend to suffer image resolution losses due to the additional fibre-optic link to the head that is needed.

The project team are now finalising the pill-sized wireless IVP2 probe. While the travel of the pill cannot be controlled, a tiny motor in the head enables the image sensor to swivel for views in different directions. The team has chosen to go for an external power source, where the probe draws power by induction from a vest worn by the patient. The vest also picks up the images transmitted by the probe, as well as transmitting them wirelessly to a nearby PC.

Both prototypes transmit colour images. However, Harendt says, the challenge for IVP2 is the bandwidth required. “The images have a high pixel content, which means high data transmission needs, so we are looking at how to compress the data to reduce the bandwidth required.”

Another of the key objectives for the IVP team, she stresses, was to make the technology cheap enough to allow the scopes to be disposable. “Obviously the IVP2 pill is disposable, but if we can also produce the wired IVP1 scope cheaply enough, full disposability brings great advantages for hospitals in reduced sterilisation costs.”

The two prototypes are now being readied for the required medical evaluation tests. One of the project partners, an endoscope manufacturer, is already examining the possibility of turning the IVP1 prototype into a commercial product suitable for use in abdominal surgery, gynaecology, urology and gastro-enterology.

Tara Morris | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>