Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic might fight HIV-induced neurological problems

29.04.2005


By studying animals, Johns Hopkins researchers have discovered that the antibiotic minocycline might help alleviate HIV’s negative effects on the brain and central nervous system, problems that can develop even though antiretroviral therapy controls the virus elsewhere in the body.



Five monkeys infected with simian immunodeficiency virus (SIV), a very close relative of HIV, and treated with minocycline had less damage to brain cells, less brain inflammation, and less virus in the central nervous system than six infected monkeys that received no treatment, the researchers report in the April 27 issue of the Journal of the American Medical Association.

"In people, antiretroviral treatments do a great job of controlling HIV in blood, but most of the drugs don’t cross the blood-brain barrier very well," says Christine Zink, D.V.M., Ph.D., professor of comparative medicine at the Johns Hopkins University School of Medicine. "As a result, even though the infection seems to be controlled, it may still cause damage in the brain. And because people are living with HIV longer than ever, the prevalence of neurological damage is increasing. Currently, there’s no drug to treat it directly."


In use for more than 30 years, minocycline was specifically designed to cross the blood-brain barrier, the biological "wall" that limits what can pass from the blood into the brain. Other researchers have reported that this antibiotic can protect brain cells in animal models of other diseases -- multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, stroke and more. The drug is being tested in early clinical trials for some non-HIV-related conditions.

"Last year we discovered that SIV triggers some of the same biological pathways of cell death and inflammation as these other diseases," says Sheila Barber, Ph.D., assistant professor of comparative medicine. "Testing minocycline in our animal model of HIV infection was really a logical next step."

A multicenter clinical trial is being planned to test whether minocycline has the same effects in HIV-infected people as it does in SIV-infected monkeys, but it is not expected to start until sometime next year.

"It is too early to recommend minocycline for patients," emphasizes Ned Sacktor, M.D., an associate professor of neurology at the Johns Hopkins Bayview Medical Center who wasn’t involved with the current study, but who is one of the physicians planning the clinical trial. "One needs to proceed with a clinical research trial first to prove its safety and efficacy against HIV-associated cognitive impairment."

SIV and HIV both affect the same tissues in the same way and use the same tricks to infect cells and outwit treatments, but SIV infects only non-human primates, and HIV only infects people. Antiretroviral drugs target and interfere with the viral proteins needed to accomplish this.

In contrast, minocycline doesn’t target the virus or its proteins. While they’re still working out the details, the researchers have shown that minocycline "calms down" as yet undefined biological pathways that involve two specific proteins -- MCP-1 and p38 -- implicated in damage in neurodegenerative diseases.

The MCP-1 protein, when secreted from brain cells under attack from HIV or SIV, attracts infection-fighting cells known as macrophages, which then enter the brain. The influx of these cells contributes to swelling and inflammation known as encephalitis. The other protein, p38, helps trigger a series of events that result in a cell’s programmed death, called apoptosis.

Only one of the five treated monkeys showed any signs of encephalitis, and that monkey’s condition was deemed mild by a set of standard measures. After the same amount of time -- 84 days after infection -- five of the six untreated monkeys had evidence of moderate or severe encephalitis and much more physical evidence of damage to brain cells, the researchers report.

"The infection in the animal model is predictable and aggressive, so we can get meaningful data by studying fewer animals," says Zink, who was on the team that developed the model about six years ago. "It’s a really demanding test of a potential treatment for HIV."

The animal model has already helped improve understanding of how HIV might affect the brain, and this is the first time it’s been used to test a potential treatment. Studies with the animals are augmented by laboratory experiments with cells to clarify observations.

Notably, these laboratory experiments have shown that minocycline somehow suppresses replication of HIV and SIV in macrophages -- the immune cells recruited to the brain during HIV infection -- and lymphocytes -- immune cells that carry "sleeping" HIV and SIV even when antiretroviral treatment is effective.

"If this preliminary observation holds up, minocycline could be really important for treating HIV infection in developing countries where access to traditional antiretroviral drugs is very limited," says Zink. "Most of the 40 million people with HIV infection live in these countries."

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>