Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into HIV immunity suggest alternative approach to vaccines

29.04.2005


New insights by Duke University Medical Center researchers as to how HIV evades the human immune system may offer a new approach for developing HIV vaccines. The findings suggest some HIV vaccines may have failed because they induce a class of antibodies that a patient’s own immune system is programmed to destroy.

The Duke team discovered that certain broadly protective antibodies, which recognize and latch onto the HIV protein gp41, resemble antibodies made in autoimmune diseases. In most people, the immune system destroys these types of antibodies to prevent attacks against self.

The Duke study suggests HIV vaccines may have failed in part because certain proteins on HIV’s protective outer coat trigger only short-lived, self-reactive antibodies instead of long-lasting, HIV-specific antibodies. The results also imply that during the initial infection stage in humans, HIV may escape destruction by the immune system because these seemingly vulnerable outer coat proteins activate self-reactive antibodies.



"The fundamental problem in all of HIV vaccine research has been that when you inject the envelope of the HIV virus into people or animals, no broadly neutralizing antibodies – those antibodies that kill most HIV strains – are made. This provides a plausible explanation for why broadly protective antibodies have not been made in response to currently tested HIV vaccines," said Barton Haynes, M.D., lead author of the study and director of the Human Vaccine Institute at Duke University Medical Center.

The researchers will report their findings in a forthcoming issue of Science. The results were published online April 28, 2005, in Science Express.

The antibody-producing portion of the human immune system is broadly divided into two categories. The first, innate B cell immunity, comprises fast-acting but weak antibodies that fight a broad range of pathogens. These antibodies can also attack the body itself, as in autoimmune disorders such as systemic lupus erythematosus. When viruses activate innate B cells, the body destroys the B cells to protect against autoantibodies that could cause autoimmune disease or other harm.

The second immune system category is adaptive B cell immunity, a slower response that creates powerful, pathogen-specific antibodies and provides lasting immunity. The body’s normal response to infection is to produce adaptive antibodies that target only the invading virus or other pathogens. Many widely used non-HIV vaccines "train" adaptive antibodies to seek out a unique protein on the protective outer coating of viruses. HIV researchers have attempted to induce broadly neutralizing antibodies – long-lived, HIV-specific antibodies that can kill all or most HIV strains – with a similar vaccine design.

Some broadly neutralizing antibodies have been isolated from HIV-infected humans, although the antibodies are rare, with less than five identified. "We know these antibodies can exist, but we have not been able to give a vaccine to people or animals that stimulates the production of these types of antibodies," said Haynes, who has studied HIV vaccines for 15 years.

In their experiments, Haynes and his colleagues demonstrated that some of these rare broadly neutralizing antibodies are actually polyspecific autoantibodies that react with many proteins, including one’s own tissues, like the antibodies made by innate B cells. In laboratory tests, the antibodies reacted with multiple types of human molecules, most prominently with a fat molecule called cardiolipin. "It appears the most vulnerable spots on the outer coat protein of HIV, to which the most protective antibodies bind, are the target of autoantibodies that also react with normal human tissues and are normally destroyed by the immune system," Haynes said.

Haynes, an AIDS researcher who has also studied autoimmune diseases, began to focus on possible similarities between HIV infection and the biology of autoimmunity after work on an experimental outer coat vaccine failed to produce broadly neutralizing antibodies in animals.

"Recently, we spent two years making an experimental outer coat vaccine candidate that had the correct areas on the outer coat for the good broadly neutralizing antibodies to bind to, and we vaccinated several kinds of animals. In none did we get any of the good antibodies. That frustrating result led me to ask if something was preventing these good antibodies from being made," Haynes said. "A light went on when I saw that the rare human monoclonal antibodies had physical characteristics very similar to autoantibodies found in autoimmune disease – in other words, to the antibodies the normal immune system does not allow to be made," Haynes said.

The results provide a new goal for future HIV research, Haynes said. "We can focus on trying to redirect the response to HIV outer coat proteins from innate B cells to adaptive B cells. Alternatively, we can develop ways to induce that first line of polyspecific antibody defense during vaccination, if these antibodies are not harmful to those being vaccinated," Haynes said. "We now have a window into how to study HIV vaccines from the host side of the problem," he said.

Collaborators on the study include Judith Fleming, William St. Clair, Richard Scearce, Kelly Plonk, Herman Staats, Thomas Ortel, Hua-Xin Liao and Munir Alam of Duke; Herman Katinger, Gabriela Stiegler and Renate Kunert of the Institute of Applied Microbiology, University of Agriculture, Vienna, Austria; and James Robinson of the Tulane University School of Medicine. The National Institute of Allergy and Infectious Diseases of the National Institutes of Health supported the work.

Becky Oskin | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>