Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsating ultrasound enhances gene therapy for tumors

26.04.2005


High-intensity focused ultrasound emitted in short pulses is a promising, non-invasive procedure for enhancing gene delivery to cancerous cells without destroying healthy tissue, according to a study in the May issue of the journal Radiology.



High-intensity focused ultrasound (HIFU) is more powerful than standard ultrasound. HIFU can destroy tumors through long and continuous exposures that raise the temperature inside cancerous cells, effectively "cooking" them. Under a technique introduced by King C.P. Li, M.D., M.B.A., from the National Institutes of Health (NIH), short pulses of HIFU can be used to prevent exposed tissue from becoming too hot and damaged. Pulsed-HIFU instead renders tissues permeable and helps target them for taking up genes and other therapeutic substances injected into the body.

"Basically, we’re using sound waves to open up the tissue by producing gaps between the cells, making it leakier and more prone to taking up various genes, agents and compounds," said Victor Frenkel, Ph.D., a staff scientist for the diagnostic radiology department at the NIH Clinical Center in Bethesda, Md.


Working with lead authors Kristin M. Dittmar, M.D., and Jianwu Xie, M.D., the researchers used pulsed-HIFU on tumors in mice, then immediately injected an easily measurable reporter gene into the vein in their tails. The reporter gene in this study--a fluorescent-green protein found in deep-sea invertebrates--was visible in all sections of the tumors exposed to pulsed-HIFU. Tumors not targeted with pulsed-HIFU showed negligible signs of the gene.

An analysis showed reporter gene levels to be nine times higher in tumors treated with pulsed-HIFU compared with tumors left unexposed.

Researchers were especially encouraged by the results because the type of cancer treated in the study--squamous cell carcinoma, found in head and neck tumors--is one of the least permeable cancers and does not respond well to chemotherapy or radiation. However, these types of tumors have responded to certain types of therapeutic genes.

"This procedure is hypothetically generic for enhancing delivery to all tissues," Dr. Frenkel said. "Previous studies by Dr. Li have shown that pulsed-HIFU increases the uptake of drugs. Now we’ve shown that it works for genes and we’re making the case that there’s a connection between the two."

Other methods currently being investigated for enhancing gene delivery, such as lasers and electric current, are limited to surface lesions or require needles to be inserted in the body. Pulsed-HIFU is non-invasive and can treat any area of the body accessible by ultrasound, the exceptions being the lungs and bones. Additional advantages of pulsed-HIFU include no scarring, limited blood loss and infections, reduced risk of other complications, shortened recovery time, significant reduction in costs and the potential for many procedures to be done on an outpatient basis.

Doug Dusik | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>